SLVSHB3 November   2025 LM51251A-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Device Configuration (CFG-pin)
      2. 6.3.2  Device and Phase Enable/Disable (UVLO/EN, EN2)
      3. 6.3.3  Dual Device Operation
      4. 6.3.4  Switching Frequency and Synchronization (SYNCIN)
      5. 6.3.5  Dual Random Spread Spectrum (DRSS)
      6. 6.3.6  Operation Modes (BYPASS, DEM, FPWM)
      7. 6.3.7  VCC Regulator, BIAS (BIAS-pin, VCC-pin)
      8. 6.3.8  Soft Start (SS-pin)
      9. 6.3.9  VOUT Programming (VOUT, ATRK, DTRK)
      10. 6.3.10 Protections
        1. 6.3.10.1 VOUT Overvoltage Protection (OVP)
        2. 6.3.10.2 Thermal Shutdown (TSD)
      11. 6.3.11 Fault Indicator (nFAULT-pin)
      12. 6.3.12 Slope Compensation (CSP1, CSP2, CSN1, CSN2)
      13. 6.3.13 Current Sense Setting and Switch Peak Current Limit (CSP1, CSP2, CSN1, CSN2)
      14. 6.3.14 Input Current Limit and Monitoring (ILIM, IMON, DLY)
      15. 6.3.15 Maximum Duty Cycle and Minimum Controllable On-time Limits
      16. 6.3.16 Signal Deglitch Overview
      17. 6.3.17 MOSFET Drivers, Integrated Boot Diode, and Hiccup Mode Fault Protection (LOx, HOx, HBx-pin)
      18. 6.3.18 I2C Features
        1. 6.3.18.1 Register VOUT (0x0)
        2. 6.3.18.2 Register Configuration 1 (0x1)
        3. 6.3.18.3 Register Configuration 2 (0x2)
        4. 6.3.18.4 Register Configuration 3 (0x3)
        5. 6.3.18.5 Register Operation State (0x4)
        6. 6.3.18.6 Register Status Byte (0x5)
        7. 6.3.18.7 Register Clear Faults (0x6)
    4. 6.4 Device Functional Modes
      1. 6.4.1 Shutdown State
    5. 6.5 Programming
      1. 6.5.1 I2C Bus Operation
  8. LM51251A-Q1 Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Feedback Compensation
      2. 8.1.2 Non-synchronous Application
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Determine the Total Phase Number
        2. 8.2.2.2  Determining the Duty Cycle
        3. 8.2.2.3  Timing Resistor RT
        4. 8.2.2.4  Inductor Selection Lm
        5. 8.2.2.5  Current Sense Resistor Rcs
        6. 8.2.2.6  Current Sense Filter RCSFP, RCSFN, CCS
        7. 8.2.2.7  Low-Side Power Switch QL
        8. 8.2.2.8  High-Side Power Switch QH
        9. 8.2.2.9  Snubber Components
        10. 8.2.2.10 Vout Programming
        11. 8.2.2.11 Input Current Limit (ILIM/IMON)
        12. 8.2.2.12 UVLO Divider
        13. 8.2.2.13 Soft Start
        14. 8.2.2.14 CFG Settings
        15. 8.2.2.15 Output Capacitor Cout
        16. 8.2.2.16 Input Capacitor Cin
        17. 8.2.2.17 Bootstrap Capacitor
        18. 8.2.2.18 VCC Capacitor CVCC
        19. 8.2.2.19 BIAS Capacitor
        20. 8.2.2.20 VOUT Capacitor
        21. 8.2.2.21 Loop Compensation
      3. 8.2.3 Application Curves
        1. 8.2.3.1 Efficiency
        2. 8.2.3.2 Steady State Waveforms
        3. 8.2.3.3 Step Load Response
        4. 8.2.3.4 Sync Operation
        5. 8.2.3.5 AC Loop Response Curve
        6. 8.2.3.6 Thermal Performance
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Determine the Total Phase Number

Interleaved operation offers many advantages in high current applications such as higher efficiency, lower component stresses and reduced input and output ripple. For dual phase interleaved operation, the output power path is split reducing the input current in each phase by one-half. Ripple currents in the input and output capacitors are reduced significantly since each channel operates 180 degrees out of phase from the other. As shown in Figure 8-4, the input current ripple is reduced significantly.

LM51251A-Q1 Input
                    Current Ripple Reduced With Dual Phase Interleaving Figure 8-4 Input Current Ripple Reduced With Dual Phase Interleaving

Here, 2 phase is selected for the design:

Equation 27. Np=2

The total power Pout_total is shared among phases, the power of each phase is found as:

Equation 28. P o u t = P o u t _ t o t a l N p = 500 W