SLVSHK4 December   2025 MCT8376Z-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings AUTO
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 SPI Slave Mode Timings
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Output Stage
      2. 7.3.2  PWM Control Mode (1x PWM Mode)
        1. 7.3.2.1 Analog Hall Input Configuration
        2. 7.3.2.2 Digital Hall Input Configuration
        3. 7.3.2.3 Asynchronous Modulation
        4. 7.3.2.4 Synchronous Modulation
        5. 7.3.2.5 Motor Operation
      3. 7.3.3  Device Interface Modes
        1. 7.3.3.1 Serial Peripheral Interface (SPI)
        2. 7.3.3.2 Hardware Interface
      4. 7.3.4  AVDD and GVDD Linear Voltage Regulator
      5. 7.3.5  Charge Pump
      6. 7.3.6  Slew Rate Control
      7. 7.3.7  Cross Conduction (Dead Time)
      8. 7.3.8  Propagation Delay
      9. 7.3.9  Pin Diagrams
        1. 7.3.9.1 Logic Level Input Pin (Internal Pulldown)
        2. 7.3.9.2 Logic Level Input Pin (Internal Pullup)
        3. 7.3.9.3 Open Drain Pin
        4. 7.3.9.4 Push Pull Pin
        5. 7.3.9.5 Seven Level Input Pin
      10. 7.3.10 Current Sense Amplifier Output (SO)
      11. 7.3.11 Active Demagnetization
        1. 7.3.11.1 Automatic Synchronous Rectification Mode (ASR Mode)
          1. 7.3.11.1.1 Automatic Synchronous Rectification in Commutation
          2. 7.3.11.1.2 Automatic Synchronous Rectification in PWM Mode
        2. 7.3.11.2 Automatic Asynchronous Rectification Mode (AAR Mode)
      12. 7.3.12 Cycle-by-Cycle Current Limit
        1. 7.3.12.1 Cycle by Cycle Current Limit with 100% Duty Cycle Input
      13. 7.3.13 Hall Comparators (Analog Hall Inputs)
      14. 7.3.14 Advance Angle
      15. 7.3.15 FGOUT Signal
      16. 7.3.16 Protections
        1. 7.3.16.1 VM Supply Undervoltage Lockout (RESET)
        2. 7.3.16.2 AVDD Undervoltage Protection (AVDD_UV)
        3. 7.3.16.3 GVDD Undervoltage Lockout (GVDD_UV)
        4. 7.3.16.4 VCP Charge Pump Undervoltage Lockout (CPUV)
        5. 7.3.16.5 Overvoltage Protections (OV)
        6. 7.3.16.6 Overcurrent Protection (OCP)
          1. 7.3.16.6.1 OCP Latched Shutdown (OCP_MODE = 00b)
          2. 7.3.16.6.2 OCP Automatic Retry (OCP_MODE = 01b)
          3. 7.3.16.6.3 OCP Report Only (OCP_MODE = 10b)
          4. 7.3.16.6.4 OCP Disabled (OCP_MODE = 11b)
        7. 7.3.16.7 Motor Lock (MTR_LOCK)
          1. 7.3.16.7.1 MTR_LOCK Latched Shutdown (MTR_LOCK_MODE = 00b)
          2. 7.3.16.7.2 MTR_LOCK Automatic Retry (MTR_LOCK_MODE = 01b)
          3. 7.3.16.7.3 MTR_LOCK Report Only (MTR_LOCK_MODE= 10b)
          4. 7.3.16.7.4 MTR_LOCK Disabled (MTR_LOCK_MODE = 11b)
        8. 7.3.16.8 Thermal Warning (OTW)
        9. 7.3.16.9 Thermal Shutdown (OTS)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Operating Mode
        3. 7.4.1.3 Fault Reset (CLR_FLT or nSLEEP Reset Pulse)
      2. 7.4.2 DRVOFF Functionality
    5. 7.5 SPI Communication
      1. 7.5.1 Programming
        1. 7.5.1.1 SPI Format
  9. Register Map
    1. 8.1 STATUS Registers
    2. 8.2 CONTROL Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Hall Sensor Configuration and Connection
      1. 9.2.1 Typical Configuration
      2. 9.2.2 Open Drain Configuration
      3. 9.2.3 Series Configuration
      4. 9.2.4 Parallel Configuration
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Bulk Capacitance
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
      3. 9.4.3 Thermal Considerations
        1. 9.4.3.1 Power Dissipation
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Programming

On MCT8376Z-Q1 SPI devices, an SPI bus is used to set device configurations, operating parameters, and read out diagnostic information. The SPI operates in secondary mode and connects to a controller. The SPI input data (SDI) word consists of a 24-bit word, with one read or write bit, a parity bit, 6-bit address and 15 bits of data with a parity bit. The SPI output consists of 24 bit word, with a 8 bits of status information (STS register) and 16-bit register data.

A valid frame must meet the following conditions:

  • The SCLK pin is low when the nSCS pin transitions from high to low and from low to high.
  • The nSCS pin is pulled high for at least 400ns between words.
  • When the nSCS pin is pulled high, any signals at the SCLK and SDI pins are ignored and the SDO pin is placed in the Hi-Z state.
  • Data is captured on the falling edge of the SCLK pin and data is propagated on the rising edge of the SCLK pin.
  • The most significant bit (MSB) is shifted in and out first.
  • A full 24 SCLK cycles must occur for transaction to be valid.
  • If the data word sent to the SDI pin is less than or more than 24 bits, a frame error occurs and the data word is ignored.
  • For a write command, the existing data in the register being written to is shifted out on the SDO pin following the 8-bit status data.

The SPI registers are reset to the default settings on power up and when the device is enters sleep mode