SLVUDF6 September   2025

 

  1.   1
  2.   Description
  3.   Get Started
  4.   Features
  5.   Applications
  6.   6
  7. 1Evaluation Module Overview
    1. 1.1 Introduction
    2. 1.2 Kit Contents
    3. 1.3 System Description
      1. 1.3.1 Key System Specifications
      2. 1.3.2 End Equipment
      3. 1.3.3 Electricity Meter
    4. 1.4 Device Information
  8. 2Hardware
    1. 2.1 System Overview
      1. 2.1.1 Block Diagram
      2. 2.1.2 Design Considerations
        1. 2.1.2.1 Voltage Measurement - Analog Front End
        2. 2.1.2.2 Current Measurement - Analog Front End
        3. 2.1.2.3 Input Voltage
  9. 3Software
    1. 3.1 Metrology Overview
      1. 3.1.1 Metrology Formulas
      2. 3.1.2 UART for PC GUI Communication
      3. 3.1.3 Direct Memory Access (DMA)
      4. 3.1.4 ADC Setup
      5. 3.1.5 Foreground Process
      6. 3.1.6 Background Process
      7. 3.1.7 Software Function per_sample_dsp ()
      8. 3.1.8 Frequency Measurement and Cycle Tracking
      9. 3.1.9 LED Pulse Generation
  10. 4Implementation Results
    1. 4.1 Evaluation Procedure
      1. 4.1.1 Equipment Setup
      2. 4.1.2 Test Procedure
        1. 4.1.2.1 Working with the Metrology GUI
        2. 4.1.2.2 Calibration
          1. 4.1.2.2.1 Voltage and Current Offset Calibration
          2. 4.1.2.2.2 Voltage and Current Gain Calibration
          3. 4.1.2.2.3 Active Power Gain Calibration
          4. 4.1.2.2.4 Offset Calibration
          5. 4.1.2.2.5 Phase Calibration
    2. 4.2 Performance Data and Results
      1. 4.2.1 Electricity Meter Metrology Accuracy Results
  11. 5Hardware Design Files
    1. 5.1 Schematics
    2. 5.2 PCB Layouts
    3. 5.3 Bill of Materials (BOM)
  12. 6Additional Information
    1. 6.1 Trademarks
  13. 7Compliance Information
    1. 7.1 Compliance and Certifications
  14. 8Related Documentation

Electricity Meter Metrology Accuracy Results

After gain, phase, and offset calibration, the test results are shown in the following tables. Table 4-2 and Figure 4-7 show the active energy test results.

Table 4-2 Active Energy % Error Versus Current, 3mΩ Shunt, 230V
CURRENT (A) AVG ERROR% PF=1

Cos PHI = 1 (0°)

AVG ERROR% PF=0.5i

Cos PHI = 0.5i (60°)

AVG ERROR% PF=0.8c

Cos PHI = 0.8c (–36.87°)

0.05

0.368

0.413

0.605

0.15

0.111

0.098

0.29

5

0.026

-0.374

0.141

10

0.073

-0.311

0.21

15

0.096

-0.242

0.29

AMC-ADC-1PH-EVM Active Energy % Error Versus Current, 3mΩ Shunt, 230VFigure 4-7 Active Energy % Error Versus Current, 3mΩ Shunt, 230V

Table 4-3 and Figure 4-8 show the reactive energy test results.

Table 4-3 Reactive Energy % Error Versus Current, 3mΩ Shunts
CURRENT (A)

AVG ERROR%

Sin PHI = 1i (90°)

AVG ERROR%

Sin PHI = 0.5i (30°)

AVG ERROR%

Sin PHI = 0.8c (–53.13°)

0.05

0.494

1.316

-0.644

0.15

0.086

0.486

-0.097

5

0.172

0.549

-0.049

10

0.202

0.607

0.053

15

0.264

0.682

0.141

AMC-ADC-1PH-EVM Reactive Energy % Error Versus
                    Current, 3mΩ Shunts Figure 4-8 Reactive Energy % Error Versus Current, 3mΩ Shunts