SNOSD74C May   2019  – December 2024 LMG1025-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Stage
      2. 6.3.2 Output Stage
      3. 6.3.3 Bias Supply and Under Voltage Lockout
      4. 6.3.4 Overtemperature Protection (OTP)
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Handling Ground Bounce
        2. 7.2.2.2 Creating Nanosecond Pulse
        3. 7.2.2.3 VDD and Overshoot
        4. 7.2.2.4 Operating at Higher Frequency
      3. 7.2.3 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 Gate Drive Loop Inductance and Ground Connection
      2. 9.1.2 Bypass Capacitor
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Trademarks
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Bypass Capacitor

The VDD power terminal of the LMG1025-Q1 must by bypassed to ground immediately adjacent to the IC. The placement and value of the bypass capacitor is very critical because of the fast gate drive of the IC, . The bypass capacitor must be located on the top layer, as close as possible to the IC, and connected to both VDD and GND using large power planes. This bypass capacitor has to be at least a 0.1 µF, up to 1 µF, with temperature coeffient X7R or better. Recommended body types are LICC, IDC, Feed-though, and LGA. Finally, an additional 1μF capacitor should be placed as close to the IC as practical.