TIDT367 December   2023

 

  1.   1
  2.   Description
  3.   Features
  4.   Applications
  5. 1Test Prerequisites
    1. 1.1 Voltage and Current Requirements
    2. 1.2 Required Equipment
    3. 1.3 Test Setup
      1. 1.3.1 Hardware Setup
      2. 1.3.2 Software Setup
    4. 1.4 Running the Code for Different Labs
      1. 1.4.1 Lab 1. Primary to Secondary Power Flow, Open Loop Check PWM Driver
      2. 1.4.2 Lab 2. Primary to Secondary Power Flow, Open Loop CheckPWM Driver and ADC With Protection
      3. 1.4.3 Lab 3. Primary to Secondary Power Flow, Closed Voltage Loop Check
      4. 1.4.4 Lab 4. Primary to Secondary Power Flow, Closed Current Loop Check
      5. 1.4.5 Lab 6. Secondary to Primary Power Flow, Open Loop Check PWM Driver
      6. 1.4.6 Lab 7. Secondary to Primary Power Flow, Open Loop Check PWM Driver and ADC With Protection
      7. 1.4.7 Lab 8. Secondary to Primary Power Flow, Closed Voltage Loop Check
  6. 2Testing and Results
    1. 2.1 Efficiency Graphs
    2. 2.2 Efficiency Data
    3. 2.3 Thermal Images
    4. 2.4 Bode Plots
  7. 3Waveforms
    1. 3.1 Switching
    2. 3.2 Load Transients
    3. 3.3 Start-Up Sequence
    4. 3.4 Dynamic Response
    5. 3.5 Mode Transition

Description

The capacitor-inductor-inductor-inductor-capacitor (CLLLC) resonant converter with a symmetric tank, soft switching characteristics, and ability to switch at higher frequencies is a good choice for energy storage systems. This design illustrates control of this power topology using a C2000® MCU in closed voltage and closed current-loop mode. The hardware and software available with this design help accelerate time to market.