TIDUBE5A January   2022  – October 2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 TMS320F280025C
      3. 2.3.3 TMS320F280039C
      4. 2.3.4 UCC28740
      5. 2.3.5 UCC27517
      6. 2.3.6 TLV9062
      7. 2.3.7 TLV76733
    4. 2.4 System Design Theory
      1. 2.4.1 Interleaved PFC
        1. 2.4.1.1 Full Bridge Diode Rectifier Rating
        2. 2.4.1.2 Inductor Ratings
        3. 2.4.1.3 AC Voltage Sensing
        4. 2.4.1.4 DC Link Voltage Sensing
        5. 2.4.1.5 Bus Current Sensing
        6. 2.4.1.6 DC Link Capacitor Rating
        7. 2.4.1.7 MOSFET Ratings
        8. 2.4.1.8 Diode Ratings
      2. 2.4.2 Three-Phase PMSM Drive
        1. 2.4.2.1 Field Oriented Control of PM Synchronous Motor
        2. 2.4.2.2 Sensorless Control of PM Synchronous Motor
          1. 2.4.2.2.1 Enhanced Sliding Mode Observer with Phase Locked Loop
            1. 2.4.2.2.1.1 Mathematical Model and FOC Structure of an IPMSM
            2. 2.4.2.2.1.2 Design of ESMO for the IPMSM
            3. 2.4.2.2.1.3 Rotor Position and Speed Estimation with PLL
        3. 2.4.2.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        4. 2.4.2.4 Compressor Drive with Automatic Vibration Compensation
        5. 2.4.2.5 Fan Drive with Flying Start
        6. 2.4.2.6 Hardware Prerequisites for Motor Drive
          1. 2.4.2.6.1 Motor Current Feedback
            1. 2.4.2.6.1.1 Current Sensing with Three-Shunt
            2. 2.4.2.6.1.2 Current Sensing with Single-Shunt
          2. 2.4.2.6.2 Motor Voltage Feedback
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Getting Started Hardware
      1. 3.1.1 Hardware Board Overview
      2. 3.1.2 Test Conditions
      3. 3.1.3 Test Equipment Required for Board Validation
      4. 3.1.4 Test Setup
    2. 3.2 Getting Started Firmware
      1. 3.2.1 Download and Install Software Required for Board Test
      2. 3.2.2 Opening Project Inside CCS
      3. 3.2.3 Project Structure
    3. 3.3 Test Procedure
      1. 3.3.1 Build Level 1: CPU and Board Setup
        1. 3.3.1.1 Start CCS and Open Project
        2. 3.3.1.2 Build and Load Project
        3. 3.3.1.3 Setup Debug Environment Windows
        4. 3.3.1.4 Run the Code
      2. 3.3.2 Build Level 2: Open Loop Check with ADC Feedback
        1. 3.3.2.1 Start CCS and Open Project
        2. 3.3.2.2 Build and Load Project
        3. 3.3.2.3 Setup Debug Environment Windows
        4. 3.3.2.4 Run the Code
      3. 3.3.3 Build Level 3: Closed Current Loop Check
        1. 3.3.3.1 Start CCS and Open Project
        2. 3.3.3.2 Build and Load Project
        3. 3.3.3.3 Setup Debug Environment Windows
        4. 3.3.3.4 Run the Code
      4. 3.3.4 Build Level 4: Full PFC and Motor Drive Control
        1. 3.3.4.1  Start CCS and Open Project
        2. 3.3.4.2  Build and Load Project
        3. 3.3.4.3  Setup Debug Environment Windows
        4. 3.3.4.4  Run the Code
        5. 3.3.4.5  Run the System
        6. 3.3.4.6  Tuning Motor Drive FOC Parameters
        7. 3.3.4.7  Tuning PFC Parameters
        8. 3.3.4.8  Tuning Field Weakening and MTPA Control Parameters
        9. 3.3.4.9  Tuning Flying Start Control Parameters
        10. 3.3.4.10 Tuning Vibration Compensation Parameters
        11. 3.3.4.11 Tuning Current Sensing Parameters
    4. 3.4 Test Results
      1. 3.4.1 Performance Data and Curves
      2. 3.4.2 Functional Waveforms
      3. 3.4.3 Transient Waveforms
      4. 3.4.4 MCU CPU Load, Memory and Peripherals Usage
        1. 3.4.4.1 CPU Load for Full Implementation
        2. 3.4.4.2 Memory Usage
        3. 3.4.4.3 Peripherals Usage
    5. 3.5 Migrate Firmware to a New Hardware Board
      1. 3.5.1 Configure the PWM, CMPSS, and ADC Modules
      2. 3.5.2 Setup Hardware Board Parameters
      3. 3.5.3 Configure Faults Protection Parameters
      4. 3.5.4 Setup Motor Electrical Parameters
      5. 3.5.5 Setup PFC Control Parameters
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 Altium Project
      4. 4.1.4 Gerber Files
      5. 4.1.5 PCB Layout Guidelines
    2. 4.2 Software Files
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  10. 5Terminology
  11. 6Revision History
Design of ESMO for the IPMSM

The conventional PLL integrated into the SMO is shown in Figure 2-18.

Figure 2-18 Block Diagram of eSMO with PLL for a PMSM

The traditional reduced-order sliding mode observer is constructed, which mathematical model is shown in Equation 51 and the block diagram is shown in Figure 2-19.

Equation 51. i ^ ˙ α i ^ ˙ β = 1 L d - R s - ω ^ e ( L d - L q ) ω ^ e ( L d - L q ) - R s i ^ α i ^ β + 1 L d V α - e ^ α + z α V β - e ^ β + z β

where z α and z β are sliding mode feedback components and are defined as:

Equation 52. z α z β = k α s i g n ( i ^ α - i α ) k β s i g n ( i ^ β - i β )

Where k α and k β are the constant sliding mode gain designed by Lyapunov stability analysis. If k α and k β are positive and significant enough to guarantee the stable operation of the SMO, the k α and k β should be large enough to hold k α > m a x ( e α ) and k β > m a x ( e β ) .

Figure 2-19 Block Diagram of Traditional Sliding Mode Observer

The estimated value of EEMF in α-β axes ( e ^ α , e ^ β ) can be obtained by low-pass filter from the discontinuous switching signals z α and z α :

Equation 53. e ^ α e ^ β = ω c s + ω c z α z β

Where ω c = 2 π f c is the cutoff angular frequency of the LPF, which is usually selected according to the fundamental frequency of the stator current.

Therefore, the rotor position can be directly calculated from arc-tangent the back EMF, defined as follow

Equation 54. θ ^ e = - tan - 1 e ^ α e ^ β

Low pass filter removes the high-frequency term of the sliding mode function, which leads to occur phase delay resulting. It can be compensated by the relationship between the cut-off frequency ω c and back EMF frequency ω e , which is defined as:

Equation 55. θ e = - tan - 1 ( ω e ω c )

And then the estimated rotor position by using SMO method is:

Equation 56. θ ^ e = - tan - 1 e ^ α e ^ β + θ e

In a digital control application, a time discrete equation of the SMO is needed. The Euler method is the appropriate way to transform to a time discrete observer. The time discrete system matrix of Equation 51 in α-β coordinates is given by Equation 57 as:

Equation 57. i ˙ ^ α ( n + 1 ) i ˙ ^ β ( n + 1 ) = F α F β i ˙ ^ α ( n ) i ˙ ^ β ( n ) + G α G β V α * ( n ) - e ^ α ( n ) + z α ( n ) V β * ( n ) - e ^ β ( n ) + z β ( n )

Where the matrix F and G are given by Equation 58 and Equation 59 as:

Equation 58. F α F β = e - R s L d e - R s L q
Equation 59. G α G β = 1 R s 1 - e - R s L d 1 - e - R s L q

The time discrete form of Equation 53 is given by Equation 60 as:

Equation 60. e ^ α ( n + 1 ) e ^ β ( n + 1 ) = e ^ α ( n ) e ^ β ( n ) + 2 π f c z α ( n ) - e ^ α ( n ) z β ( n ) - e ^ β ( n )