TIDUBE5A January   2022  – October 2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 TMS320F280025C
      3. 2.3.3 TMS320F280039C
      4. 2.3.4 UCC28740
      5. 2.3.5 UCC27517
      6. 2.3.6 TLV9062
      7. 2.3.7 TLV76733
    4. 2.4 System Design Theory
      1. 2.4.1 Interleaved PFC
        1. 2.4.1.1 Full Bridge Diode Rectifier Rating
        2. 2.4.1.2 Inductor Ratings
        3. 2.4.1.3 AC Voltage Sensing
        4. 2.4.1.4 DC Link Voltage Sensing
        5. 2.4.1.5 Bus Current Sensing
        6. 2.4.1.6 DC Link Capacitor Rating
        7. 2.4.1.7 MOSFET Ratings
        8. 2.4.1.8 Diode Ratings
      2. 2.4.2 Three-Phase PMSM Drive
        1. 2.4.2.1 Field Oriented Control of PM Synchronous Motor
        2. 2.4.2.2 Sensorless Control of PM Synchronous Motor
          1. 2.4.2.2.1 Enhanced Sliding Mode Observer with Phase Locked Loop
            1. 2.4.2.2.1.1 Mathematical Model and FOC Structure of an IPMSM
            2. 2.4.2.2.1.2 Design of ESMO for the IPMSM
            3. 2.4.2.2.1.3 Rotor Position and Speed Estimation with PLL
        3. 2.4.2.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        4. 2.4.2.4 Compressor Drive with Automatic Vibration Compensation
        5. 2.4.2.5 Fan Drive with Flying Start
        6. 2.4.2.6 Hardware Prerequisites for Motor Drive
          1. 2.4.2.6.1 Motor Current Feedback
            1. 2.4.2.6.1.1 Current Sensing with Three-Shunt
            2. 2.4.2.6.1.2 Current Sensing with Single-Shunt
          2. 2.4.2.6.2 Motor Voltage Feedback
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Getting Started Hardware
      1. 3.1.1 Hardware Board Overview
      2. 3.1.2 Test Conditions
      3. 3.1.3 Test Equipment Required for Board Validation
      4. 3.1.4 Test Setup
    2. 3.2 Getting Started Firmware
      1. 3.2.1 Download and Install Software Required for Board Test
      2. 3.2.2 Opening Project Inside CCS
      3. 3.2.3 Project Structure
    3. 3.3 Test Procedure
      1. 3.3.1 Build Level 1: CPU and Board Setup
        1. 3.3.1.1 Start CCS and Open Project
        2. 3.3.1.2 Build and Load Project
        3. 3.3.1.3 Setup Debug Environment Windows
        4. 3.3.1.4 Run the Code
      2. 3.3.2 Build Level 2: Open Loop Check with ADC Feedback
        1. 3.3.2.1 Start CCS and Open Project
        2. 3.3.2.2 Build and Load Project
        3. 3.3.2.3 Setup Debug Environment Windows
        4. 3.3.2.4 Run the Code
      3. 3.3.3 Build Level 3: Closed Current Loop Check
        1. 3.3.3.1 Start CCS and Open Project
        2. 3.3.3.2 Build and Load Project
        3. 3.3.3.3 Setup Debug Environment Windows
        4. 3.3.3.4 Run the Code
      4. 3.3.4 Build Level 4: Full PFC and Motor Drive Control
        1. 3.3.4.1  Start CCS and Open Project
        2. 3.3.4.2  Build and Load Project
        3. 3.3.4.3  Setup Debug Environment Windows
        4. 3.3.4.4  Run the Code
        5. 3.3.4.5  Run the System
        6. 3.3.4.6  Tuning Motor Drive FOC Parameters
        7. 3.3.4.7  Tuning PFC Parameters
        8. 3.3.4.8  Tuning Field Weakening and MTPA Control Parameters
        9. 3.3.4.9  Tuning Flying Start Control Parameters
        10. 3.3.4.10 Tuning Vibration Compensation Parameters
        11. 3.3.4.11 Tuning Current Sensing Parameters
    4. 3.4 Test Results
      1. 3.4.1 Performance Data and Curves
      2. 3.4.2 Functional Waveforms
      3. 3.4.3 Transient Waveforms
      4. 3.4.4 MCU CPU Load, Memory and Peripherals Usage
        1. 3.4.4.1 CPU Load for Full Implementation
        2. 3.4.4.2 Memory Usage
        3. 3.4.4.3 Peripherals Usage
    5. 3.5 Migrate Firmware to a New Hardware Board
      1. 3.5.1 Configure the PWM, CMPSS, and ADC Modules
      2. 3.5.2 Setup Hardware Board Parameters
      3. 3.5.3 Configure Faults Protection Parameters
      4. 3.5.4 Setup Motor Electrical Parameters
      5. 3.5.5 Setup PFC Control Parameters
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 Altium Project
      4. 4.1.4 Gerber Files
      5. 4.1.5 PCB Layout Guidelines
    2. 4.2 Software Files
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  10. 5Terminology
  11. 6Revision History

MOSFET Ratings

  • MOSFET Voltage Rating

    When MOSFET is in OFF state, it will have to block DC bus voltage which can rise up to 400V maximum. S0, with leaving 50% room as safety factor, 600V MOSFET is selected in this design.

  • MOSFET Current Rating

    When MOSFET is ON, it will conduct peak value of inductor current when inductance is at its lowest value

    Equation 23. IFET(PEAK)=IL(PEAK)
  • Power Dissipation in MOSFET

    Total power dissipation in MOSFET consists of conduction loss, turn off loss, turn on loss, COSS loss and gate drive loss. It can be estimated using following formula

    Equation 24. PFET= PRDS(ON)+PSWITCH(tON)+PSWTICH(tOFF)+PCOSS+PGATE
  • MOSFET Conduction Loss

    Conduction loss in MOSFET can be calculated by following formula

    Equation 25. PRDS(ON)=IFET(RMS)2×RDS(ON)

    where FET RMS current can be calculated using following formula:

    Equation 26. IFET(RMS)=fLINE×n=1Iteration0D(n×Step)fSWIINn×Step22dt
  • MOSFET Switch ON Loss
    • MOSFET switching loss due to turn on operation
      Equation 27. PSWITCH(tON)=fLINE×n=1IterationIINtON(n×Step)×VOUT×tON(delay)
    • Where current at ON state is given by
      Equation 28. IINtONt=IL-IL_MAX2sinω×t
    • MOSFET turn ON delay time can be given by
      Equation 29. tON(delay)=QGS(miller)IGATE(ON)
    • IGATE(ON) is average FET gate drive current during turn ON operation
      Equation 30. IGATE(ON)=VGS(MAX)2×RGATE(ON)
      Where, RGATE(ON) = R70 = R71. That is resistance in gate current path during turn ON operation.
  • MOSFET Switch OFF
    • MOSFET switching loss due to turn off operation
      Equation 31. PSWITCH(tOFF)=fLINE×n=1IterationIINtOFF(n×Step)×VOUT×tOFF(delay)
    • Where current at OFF state is given by
      Equation 32. IINtOFFt=IL+IL_MAX2sinω×t
    • MOSFET turn OFF delay time can be given by
      Equation 33. tOFF(delay)=QGS(miller)IGATE(OFF)
    • IGATE(OFF) is average FET gate drive current during turn OFF operation. Current in this mode flows through diode and resistor in series with diode. So, considering forward voltage drop, IGATE(OFF) can be given by:
      Equation 34. IGATE(OFF)=VGS(MAX)-Vf_Diode2×RGATE(OFF)
  • Part of the total FET losses are contributor COSS (COSS(AVG)) during charging and discharging during a PWM switching cycle and can be given by
    Equation 35. PCOSS=12×COSS(AVG)×VOUT2×fSW_PFC

    Where COSS varies with line voltage and is not a linear function. The following equation and information from the FETs data sheet can be used to calculate COSS(AVG). COSS(SPEC)is the typical COSS measured at a specified voltage VDS(SPEC).

    Equation 36. COSS(AVG)=2×COSS(SPEC)×VDS(SPEC)VOUT
  • MOSFET Gate Loss can be determined by
    Equation 37. PGATE=QGS×VGS(MAX) × fSW_PFC