TIDUBE5A January   2022  – October 2022

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 TMS320F280025C
      3. 2.3.3 TMS320F280039C
      4. 2.3.4 UCC28740
      5. 2.3.5 UCC27517
      6. 2.3.6 TLV9062
      7. 2.3.7 TLV76733
    4. 2.4 System Design Theory
      1. 2.4.1 Interleaved PFC
        1. 2.4.1.1 Full Bridge Diode Rectifier Rating
        2. 2.4.1.2 Inductor Ratings
        3. 2.4.1.3 AC Voltage Sensing
        4. 2.4.1.4 DC Link Voltage Sensing
        5. 2.4.1.5 Bus Current Sensing
        6. 2.4.1.6 DC Link Capacitor Rating
        7. 2.4.1.7 MOSFET Ratings
        8. 2.4.1.8 Diode Ratings
      2. 2.4.2 Three-Phase PMSM Drive
        1. 2.4.2.1 Field Oriented Control of PM Synchronous Motor
        2. 2.4.2.2 Sensorless Control of PM Synchronous Motor
          1. 2.4.2.2.1 Enhanced Sliding Mode Observer with Phase Locked Loop
            1. 2.4.2.2.1.1 Mathematical Model and FOC Structure of an IPMSM
            2. 2.4.2.2.1.2 Design of ESMO for the IPMSM
            3. 2.4.2.2.1.3 Rotor Position and Speed Estimation with PLL
        3. 2.4.2.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        4. 2.4.2.4 Compressor Drive with Automatic Vibration Compensation
        5. 2.4.2.5 Fan Drive with Flying Start
        6. 2.4.2.6 Hardware Prerequisites for Motor Drive
          1. 2.4.2.6.1 Motor Current Feedback
            1. 2.4.2.6.1.1 Current Sensing with Three-Shunt
            2. 2.4.2.6.1.2 Current Sensing with Single-Shunt
          2. 2.4.2.6.2 Motor Voltage Feedback
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Getting Started Hardware
      1. 3.1.1 Hardware Board Overview
      2. 3.1.2 Test Conditions
      3. 3.1.3 Test Equipment Required for Board Validation
      4. 3.1.4 Test Setup
    2. 3.2 Getting Started Firmware
      1. 3.2.1 Download and Install Software Required for Board Test
      2. 3.2.2 Opening Project Inside CCS
      3. 3.2.3 Project Structure
    3. 3.3 Test Procedure
      1. 3.3.1 Build Level 1: CPU and Board Setup
        1. 3.3.1.1 Start CCS and Open Project
        2. 3.3.1.2 Build and Load Project
        3. 3.3.1.3 Setup Debug Environment Windows
        4. 3.3.1.4 Run the Code
      2. 3.3.2 Build Level 2: Open Loop Check with ADC Feedback
        1. 3.3.2.1 Start CCS and Open Project
        2. 3.3.2.2 Build and Load Project
        3. 3.3.2.3 Setup Debug Environment Windows
        4. 3.3.2.4 Run the Code
      3. 3.3.3 Build Level 3: Closed Current Loop Check
        1. 3.3.3.1 Start CCS and Open Project
        2. 3.3.3.2 Build and Load Project
        3. 3.3.3.3 Setup Debug Environment Windows
        4. 3.3.3.4 Run the Code
      4. 3.3.4 Build Level 4: Full PFC and Motor Drive Control
        1. 3.3.4.1  Start CCS and Open Project
        2. 3.3.4.2  Build and Load Project
        3. 3.3.4.3  Setup Debug Environment Windows
        4. 3.3.4.4  Run the Code
        5. 3.3.4.5  Run the System
        6. 3.3.4.6  Tuning Motor Drive FOC Parameters
        7. 3.3.4.7  Tuning PFC Parameters
        8. 3.3.4.8  Tuning Field Weakening and MTPA Control Parameters
        9. 3.3.4.9  Tuning Flying Start Control Parameters
        10. 3.3.4.10 Tuning Vibration Compensation Parameters
        11. 3.3.4.11 Tuning Current Sensing Parameters
    4. 3.4 Test Results
      1. 3.4.1 Performance Data and Curves
      2. 3.4.2 Functional Waveforms
      3. 3.4.3 Transient Waveforms
      4. 3.4.4 MCU CPU Load, Memory and Peripherals Usage
        1. 3.4.4.1 CPU Load for Full Implementation
        2. 3.4.4.2 Memory Usage
        3. 3.4.4.3 Peripherals Usage
    5. 3.5 Migrate Firmware to a New Hardware Board
      1. 3.5.1 Configure the PWM, CMPSS, and ADC Modules
      2. 3.5.2 Setup Hardware Board Parameters
      3. 3.5.3 Configure Faults Protection Parameters
      4. 3.5.4 Setup Motor Electrical Parameters
      5. 3.5.5 Setup PFC Control Parameters
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 Altium Project
      4. 4.1.4 Gerber Files
      5. 4.1.5 PCB Layout Guidelines
    2. 4.2 Software Files
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  10. 5Terminology
  11. 6Revision History

Key System Specifications

The dual motor control with PFC reference design specifications are listed in Table 1-1.

Table 1-1 Key System Specifications
PARAMETERSTEST CONDITIONSMINNOMMAXUNIT
SYSTEM INPUT CHARACTERISTICS
Input voltage (VINAC)-165230265VAC
Input Frequency (fLINE)-475063Hz
No load standby power (PNL)VINAC=230V, Iout=0A-3.0-W
Input current (IIN)VINAC=230V, Iout

=IMAX

-15-A
PFC CONVERTER CHARACTERISTICS
PWM switching frequency (fSW)-607296kHz
Output voltage (VOUT)VIN=nom, IOUT=min to max360375385V
Output current (IOUT)VIN=min to max--5A
Line regulationVINAC=min to max

, IOUT=nom

--2%
Load regulationVINAC=nom

, IOUT=min to max

--3%
Output voltage rippleVINAC=nom

, IOUT=max

--15V
Output over voltageVINAC=min to max--430V
DC-Link peak over current (IOCP)VINAC=min--10A
Output power at high lineVINAC=250V--1.8kW
Output power at low lineVINAC=165V--1.2kW
Efficiency (Ƞ)VINAC=nom at full load-97-%
COMPRESSOR INVERTER CHARACTERISTICS
PWM switching frequency (fSW)--6-kHz
Rated output power (POUT)VINAC=nom-1.41.5kW
Output current (IRMS)VINAC=nom-10-A
Inverter efficiency (Ƞ)VINAC=nom, POUT

=nom

-98-%
Motor electrical frequency (f)VINAC=min to max20200400Hz
Fault protectionsOver current, Stall, Over temperature, Under voltage, Over voltage
Drive control method and featuresSensorless-FOC with three shunt resistors for current sensing
FAN INVERTER CHARACTERISTICS
PWM switching frequency (fSW)--18-kHz
Rated power (P)VINAC=nom-150200W
Output current (IRMS)VINAC=nom-1-A
Inverter efficiency (Ƞ)VINAC=nom, POUT

=nom

-98-%
Motor electrical frequency (f)VINAC=min to max3050400Hz
Fault protectionsOver current, Stall with recovery, Under voltage, Over voltage
Drive control method and featuresSensorless-FOC with three shunt resistors for current sensing
SYSTEM CHARACTERISTICS
Build in auxiliary power supplyVINAC=min to max

15V±10%, 300mA / 12V±10%, 500mA / 5V±10%, 500mA

Operating ambientOpen frame-102555oC
Standards and normsPower line harmonicsEC 61000-3-2 Class A
Board sizeLength × width × height

197mm * 197mm * 55mm

mm2
WARNING:

TI intends this reference design to be operated in a lab environment only and does not consider it to be a finished product for general consumer use.

TI Intends this reference design to be used only by qualified engineers and technicians familiar with risks associated with handling high-voltage electrical and mechanical components, systems, and subsystems.

High voltage! There are accessible high voltages present on the board. The board operates at voltages and currents that can cause shock, fire, or injury if not properly handled or applied. Use the equipment with necessary caution and appropriate safeguards to avoid injuring yourself or damaging property.

Hot surface! Contact can cause burns. Do not touch! Some components can reach high temperatures >55°C when the board is powered on. The user must not touch the board at any point during operation or immediately after operating, as high temperatures can be present.

CAUTION: Do not leave the design powered when unattended.