TIDUF17 November   2022 TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157-Q1

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F280039C
      2. 2.3.2 UCC21530-Q1
      3. 2.3.3 OPA607-Q1
      4. 2.3.4 LM25184-Q1
      5. 2.3.5 TCAN1044A-Q1
    4. 2.4 System Design Theory
      1. 2.4.1 Three-Phase PMSM Drive
      2. 2.4.2 Field Oriented Control of PM Synchronous Motor
      3. 2.4.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
      4. 2.4.4 Compressor Drive with Automatic Vibration Compensation
      5. 2.4.5 Hardware Prerequisites for Motor Drive
        1. 2.4.5.1 Motor Current Feedback
          1. 2.4.5.1.1 Current Sensing with Three-Shunt
          2. 2.4.5.1.2 Current Sensing with Single-Shunt
        2. 2.4.5.2 Motor Voltage Feedback
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Hardware Board Overview
      2. 3.1.2 Test Conditions
      3. 3.1.3 Test Equipment Required for Board Validation
    2. 3.2 Test Setup
      1. 3.2.1 Hardware Setup
      2. 3.2.2 Software Setup
        1. 3.2.2.1 Code Composer Studio Project
        2. 3.2.2.2 Software Structure
    3. 3.3 Test Procedure
      1. 3.3.1 Level 1 Incremental Build
        1. 3.3.1.1 Project Setup
        2. 3.3.1.2 Running the Application
      2. 3.3.2 Level 2 Incremental Build
        1. 3.3.2.1 Project Setup
        2. 3.3.2.2 Running the Application
      3. 3.3.3 Level 3 Incremental Build
        1. 3.3.3.1 Project Setup
        2. 3.3.3.2 Running the Application
      4. 3.3.4 Level 4 Incremental Build
        1. 3.3.4.1 Project Setup
        2. 3.3.4.2 Running the Application
        3. 3.3.4.3 Tuning Field Weakening and MTPA Control
        4. 3.3.4.4 Tuning Vibration Compensation
        5. 3.3.4.5 CAN FD Command Interface
    4. 3.4 Test Results
      1. 3.4.1 MCU CPU Load, Memory, and Peripheral Usage
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks

System Description

For decades, the internal combustion engine (ICE) has run the car as well as the heating and cooling systems. As the automotive industry electrifies and transitions to hybrid electric vehicles (HEVs) with small combustion engines or fully electric vehicles (EVs) with no engine at all, the heating, ventilation and air-conditioning (HVAC) systems use a PMSM motor to drive the eCompressor from high-voltage power. The eCompressor can be used to support cooling (air-conditioning), heating (heat pump), and managing thermal of other systems in the powertrain such as the battery pack and traction drive.

Today’s eCompressor in HEV/EV must meet a growing list of demands on low cost, smaller size, less vibration and noise, higher power level and higher energy efficiency. This reference design demonstrates controlling eCompressor motor using field-oriented control (FOC) without a position sensor. The overall system helps users to reduce the number of critical components in the bill of materials, improve efficiency, reduce vibration and noise, and save development time. This reference design is based on TMS320F28003x real-time controller series and is scalable with future MCU in the portfolio with the controlCARD-based form factor.

Common communication interfaces in automotive including CAN FD and LIN are supported to ease customer evaluation process. Both multi-shunt and single-shunt current sensing modes are supported for customers with different design goals to use this design for evaluation. Isolated gate driver is chosen to enable support of 400V and 800V DC bus voltage, as the trend of the industry is moving toward higher voltage level.

WARNING:

TI intends this reference design to be operated in a lab environment only and does not consider the reference design to be a finished product for general consumer use.

TI intends this reference design to be used only by qualified engineers and technicians familiar with risks associated with handling high-voltage electrical and mechanical components, systems, and subsystems.

High voltage! There are accessible high voltages present on the board. The board operates at voltages and currents that can cause shock, fire, or injury if not properly handled or applied. Use the equipment with necessary caution and appropriate safeguards to avoid injuring yourself or damaging property.

CAUTION: Do not leave the design powered when unattended.