TIDUF86A January   2025  – July 2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 System Overview
    3. 2.3 Highlighted Products
      1. 2.3.1 LMG3100
      2. 2.3.2 LMR38010
      3. 2.3.3 TMP61
      4. 2.3.4 TPS7B81
      5. 2.3.5 OPA4323
  9. 3System Design Theory
    1. 3.1 Power Stage Design: Three-Phase Inverter
    2. 3.2 LMG3100 GaN-FET Power Stage
    3. 3.3 Power Management
    4. 3.4 Current-Sensing Circuit
    5. 3.5 Overcurrent Protection Circuit
    6. 3.6 Phase Voltage and DC Input Voltage Sensing
    7. 3.7 Power-Stage PCB Temperature Monitor
    8. 3.8 Interface to Host MCU
  10. 4Hardware, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
      1. 4.1.1 TIDA-010276 PCB Overview
      2. 4.1.2 TIDA-010276 Jumper Settings
    2. 4.2 Test Setup
    3. 4.3 Test Results
      1. 4.3.1 Power Management and System Power Up and Power Down
      2. 4.3.2 GaN Inverter Switch Node Voltage
      3. 4.3.3 Switch Node Voltage Transient Response
      4. 4.3.4 Impact of PWM Frequency to DC-Bus Voltage Ripple
      5. 4.3.5 Efficiency Measurements
      6. 4.3.6 Thermal Analysis
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author
  13. 7Revision History

TMP61

The TMP61 is a positive temperature coefficient (PTC) linear silicon thermistor. The device behaves as a temperature-dependent resistor, and can be configured in a variety of ways to monitor temperature based on the system-level requirements. The TMP61 has a nominal resistance at 25°C of 10kΩ with ±1% maximum tolerance, a maximum operating voltage of 5.5V, and maximum supply current of 400µA. The benefits of this device include no extra linearity circuitry, minimized calibration, less resistance toleration variation, larger sensitivity at high temperatures, and simplified conversion methods to save time and memory in the processor. This device can be used in a variety of applications to monitor temperature close to a heat source with the very small DEC package option compatible with the typical 0402 footprint.