TIDUFB8 December   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
    2. 1.2 End Equipment
    3. 1.3 Electricity Meter
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Voltage Measurement – Analog Front End
      2. 2.2.2 Current Measurement Analog Front End
      3. 2.2.3 Input Voltage
      4. 2.2.4 Clock
    3. 2.3 Highlighted Products
      1. 2.3.1 AMC130M02
      2. 2.3.2 MSPM0G1106
      3. 2.3.3 LMK6C
      4. 2.3.4 TLV76133
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Software Requirements
      1. 3.2.1 Formulas
      2. 3.2.2 Metrology Software Process
        1. 3.2.2.1 UART for PC GUI Communication
        2. 3.2.2.2 Direct Memory Access (DMA)
        3. 3.2.2.3 ADC Setup
        4. 3.2.2.4 Foreground Process
        5. 3.2.2.5 Background Process
        6. 3.2.2.6 Software Function per_sample_dsp ()
        7. 3.2.2.7 Frequency Measurement and Cycle Tracking
        8. 3.2.2.8 LED Pulse Generation
    3. 3.3 Test Setup
      1. 3.3.1 Power Supply and Jumper Settings
      2. 3.3.2 Viewing Metrology Readings and Calibration
      3. 3.3.3 Calibration
        1. 3.3.3.1 Voltage and Current Offset Calibration
        2. 3.3.3.2 Voltage and Current Gain Calibration
        3. 3.3.3.3 Active Power Gain Calibration
        4. 3.3.3.4 Offset Calibration
        5. 3.3.3.5 Phase Calibration
    4. 3.4 Test Results
      1. 3.4.1 Electricity Meter Metrology Accuracy Results
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
      3. 4.1.3 PCB Layout Recommendations
        1. 4.1.3.1 Layout Prints
      4. 4.1.4 Altium Project
      5. 4.1.5 Gerber Files
      6. 4.1.6 Assembly Drawings
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author

Frequency Measurement and Cycle Tracking

The instantaneous voltage, currents, active powers, and reactive powers are accumulated in 64-bit registers. A cycle tracking counter keeps track of the number of cycles accumulated. When CYCLES_PER_COMPUTATION number of cycles have been accumulated, the background process stores these accumulation registers and notifies the foreground process to produce the average results, such as RMS and power values. Cycle boundaries are used to trigger the foreground averaging process because this process produces very stable results.

For frequency measurements, a straight line interpolation is used between the zero crossing voltage samples. Because noise spikes can also cause errors, the application uses a rate-of-change check to filter out the possible erroneous signals and make sure that the two points are interpolated from genuine zero crossing points. For example, with two negative samples, a noise spike can make one of the samples positive, thereby making the negative and positive pair appear as if there is a zero crossing.

The resultant cycle-to-cycle timing goes through a weak low-pass filter to further smooth out any cycle-to-cycle variations. This filtering results in a stable and accurate frequency measurement that is tolerant of noise.