Product details

Number of channels (#) 2 Total supply voltage (Max) (+5V=5, +/-5V=10) 32 Total supply voltage (Min) (+5V=5, +/-5V=10) 3 Rail-to-rail In to V- GBW (Typ) (MHz) 0.7 Slew rate (Typ) (V/us) 0.3 Vos (offset voltage @ 25 C) (Max) (mV) 2 Iq per channel (Typ) (mA) 0.35 Vn at 1 kHz (Typ) (nV/rtHz) 40 Rating Military Operating temperature range (C) -55 to 125 Offset drift (Typ) (uV/C) 7 Features Input bias current (Max) (pA) 50000 CMRR (Typ) (dB) 80 Output current (Typ) (mA) 30 Architecture Bipolar
Number of channels (#) 2 Total supply voltage (Max) (+5V=5, +/-5V=10) 32 Total supply voltage (Min) (+5V=5, +/-5V=10) 3 Rail-to-rail In to V- GBW (Typ) (MHz) 0.7 Slew rate (Typ) (V/us) 0.3 Vos (offset voltage @ 25 C) (Max) (mV) 2 Iq per channel (Typ) (mA) 0.35 Vn at 1 kHz (Typ) (nV/rtHz) 40 Rating Military Operating temperature range (C) -55 to 125 Offset drift (Typ) (uV/C) 7 Features Input bias current (Max) (pA) 50000 CMRR (Typ) (dB) 80 Output current (Typ) (mA) 30 Architecture Bipolar
CDIP (NAB) 8 66 mm² 10.16 x 6.5 CFP (NAC) 10 42 mm² 6.86 x 6.12 TO-CAN (LMC) 8 80 mm² 8.96 x 8.96
  • Available with Radiation Specification
    • High Dose Rate 100 krad(Si)
    • ELDRS Free 100 krad(Si)
  • Internally Frequency Compensated for Unity Gain
  • Large DC Voltage Gain: 100 dB
  • Wide Bandwidth (Unity Gain): 1 MH z(Temperature Compensated)
  • Wide Power Supply Range:
    • Single Supply: 3V to 32V
    • Or Dual Supplies: ±1.5V to ±16V
  • Very Low Supply Current Drain (500 μA) − Essentially Independent of Supply Voltage
  • Low Input Offset Voltage: 2 mV
  • Input Common-mode Voltage Range Includes Ground
  • Differential Input Voltage Range Equal to the Power Supply Voltage
  • Large Output Voltage Swing: 0V to V+ − 1.5V

All trademarks are the property of their respective owners.

  • Available with Radiation Specification
    • High Dose Rate 100 krad(Si)
    • ELDRS Free 100 krad(Si)
  • Internally Frequency Compensated for Unity Gain
  • Large DC Voltage Gain: 100 dB
  • Wide Bandwidth (Unity Gain): 1 MH z(Temperature Compensated)
  • Wide Power Supply Range:
    • Single Supply: 3V to 32V
    • Or Dual Supplies: ±1.5V to ±16V
  • Very Low Supply Current Drain (500 μA) − Essentially Independent of Supply Voltage
  • Low Input Offset Voltage: 2 mV
  • Input Common-mode Voltage Range Includes Ground
  • Differential Input Voltage Range Equal to the Power Supply Voltage
  • Large Output Voltage Swing: 0V to V+ − 1.5V

All trademarks are the property of their respective owners.

The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard +5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±15V power supplies.

The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard +5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±15V power supplies.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 9
Type Title Date
* Data sheet LM158QML Low Power Dual Operational Amplifiers datasheet (Rev. F) 26 Mar 2013
* SMD LM158QML SMD 5962-87710 21 Jun 2016
* Radiation & reliability report LM158AxRLQMLV ELDRS Report 11 May 2012
* Radiation & reliability report LM158AxRLQMLV SET Data 11 May 2012
Technical article What is an op amp? 21 Jan 2020
Technical article How to lay out a PCB for high-performance, low-side current-sensing designs 06 Feb 2018
Technical article Low-side current sensing for high-performance cost-sensitive applications 22 Jan 2018
Technical article Voltage and current sensing in HEV/EV applications 22 Nov 2017
More literature Die D/S LM158 MD8 Low Power Dual Op Amp 18 Sep 2012

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

LMx58_LM2904 PSpice Model (Rev. B)

SNOM268B.ZIP (29 KB) - PSpice Model
Simulation model

LMx58_LM2904 TINA-TI Macro

SNOM670.ZIP (4 KB) - TINA-TI Spice Model
Simulation model

LMx58_LM2904 Reference Design

SNOM671.ZIP (22 KB) - TINA-TI Reference Design
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Package Pins Download
(Y) 0 View options
CDIP (NAB) 8 View options
CFP (NAC) 10 View options
TO-99 (LMC) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos