Top

Product details

Parameters

Architecture Fixed Gain/Buffer Number of channels (#) 1 Total supply voltage (Min) (+5V=5, +/-5V=10) 8 Total supply voltage (Max) (+5V=5, +/-5V=10) 12 GBW (Typ) (MHz) 650 BW @ Acl (MHz) 650 Acl, min spec gain (V/V) 1 Slew rate (Typ) (V/us) 3000 Vn at flatband (Typ) (nV/rtHz) 9.3 Iq per channel (Typ) (mA) 11.5 Vos (offset voltage @ 25 C) (Max) (mV) 7 Rating Catalog Operating temperature range (C) -40 to 85 Input bias current (Max) (pA) 15000000 Offset drift (Typ) (uV/C) 35 Output current (Typ) (mA) 90 2nd harmonic (dBc) 62 3rd harmonic (dBc) 78 @ MHz 10 open-in-new Find other High-speed op amps (GBW>=50MHz)

Package | Pins | Size

SOIC (D) 8 19 mm² 4.9 x 3.9 SOT-23 (DBV) 6 5 mm² 2.9 x 1.6 open-in-new Find other High-speed op amps (GBW>=50MHz)

Features

  • Wideband operation
    • AV = +1, VO = 0.5 VPP 650 MHz
    • AV = +2, VO = 0.5 VPP 450 MHz
    • AV = +2, VO = 2 VPP 400 MHz
  • High output current ±90 mA
  • Very low distortion
    • 2nd/3rd harmonics (10 MHz, RL = 100Ω): −62/−78dBc
    • Differential gain/Differential phase: 0.02%/0.02°
  • Low noise 2.3nV/√Hz
  • High slew rate 3000 V/μs
  • Supply current 11.5 mA

All trademarks are the property of their respective owners.

open-in-new Find other High-speed op amps (GBW>=50MHz)

Description

The LMH6704 is a very wideband, DC coupled selectable gain buffer designed specifically for wide dynamic range systems requiring exceptional signal fidelity. The LMH6704 includes on chip feedback and gain set resistors, simplifying PCB layout while providing user selectable gains of +1, +2 and −1 V/V. The LMH6704 provides a disable pin, which places the amplifier in a high output impedance, low power mode. The Disable pin may be allowed to float high.

With a 650 MHz Small Signal Bandwidth (AV = +1), full power gain flatness to 200 MHz, and excellent Differential Gain and Phase, the LMH6704 is optimized for video applications. High resolution video systems will benefit from the LMH6704 ability to drive multiple video loads at low levels of differential gain or differential phase distortion.

The LMH6704 is constructed with proprietary high speed complementary bipolar process using proven current feedback circuit architectures. It is available in 8 Pin SOIC and 6 Pin SOT-23 packages.

open-in-new Find other High-speed op amps (GBW>=50MHz)
Download

Technical documentation

= Top documentation for this product selected by TI
No results found. Please clear your search and try again. View all 8
Type Title Date
* Datasheet LMH6704 650 MHz Selectable Gain Buffer with Disable datasheet (Rev. C) Mar. 18, 2013
Technical articles How to reduce distortion in high-voltage, high-frequency signal generation for AWGs Oct. 30, 2018
Technical articles What are the advantages of using JFET-input amplifiers in high-speed applications? Jun. 18, 2018
Technical articles Unique active mux capability combines buffer and switch into one solution Oct. 10, 2017
White papers The Signal e-book: A compendium of blog posts on op amp design topics Mar. 28, 2017
Technical articles How to minimize filter loss when you drive an ADC Oct. 20, 2016
User guides AN-2095 LMH730316 SOT23-5 / SOT23-6 Hi Performance Amplifier Eval Board (Rev. B) May 01, 2013
Application notes Generating Precision Clocks for Time- Interleaved ADCs Aug. 02, 2007

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARDS Download
document-generic User guide
10
Description

Texas Instruments offers this unpopulated Evaluation Board to aid in the evaluation and testing of high-speed Op Amp that are offered in the 8-Pin SOIC package. Resistors, capacitors, or any other surface-mount components can be easily mounted on this board in the desired circuit configuration. The (...)

Features
  • Accommodates various high-speed Op Amp
  • Allows quick and easy evaluation
  • Serves as reference design to aid in high-speed PCB layout
  • Utilizes surface-mount components

 

EVALUATION BOARDS Download
document-generic User guide
25
Description

Texas Instruments offers this unpopulated Evaluation Board to aid in the evaluation and testing of high-speed Op Amp that are offered in the 5-/6-Pin SOT-23 package. This 4 layer board is designed to improve speed and reduce harmonic distortion by careful placement and routing of components and (...)

Features
  • Maximizes attainable speed and minimizes distortion products
  • Accommodates various high-speed Op Amp
  • Allows quick and easy evaluation
  • Serves as reference design to aid in high-speed PCB layout
  • Utilizes surface-mount components

NOTE: IC samples are not shipped with the Evaluation PCB, but may be requested (...)

Design tools & simulation

SIMULATION MODELS Download
SNOM584.TSC (2597 KB) - TINA-TI Reference Design
SIMULATION MODELS Download
SNOM585.ZIP (2 KB) - PSpice Model
SIMULATION TOOLS Download
PSpice® for TI design and simulation tool
PSPICE-FOR-TI — PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Features
  • Leverages Cadence PSpice Technology
  • Preinstalled library with a suite of digital models to enable worst-case timing analysis
  • Dynamic updates ensure you have access to most current device models
  • Optimized for simulation speed without loss of accuracy
  • Supports simultaneous analysis of multiple products
  • (...)
SIMULATION TOOLS Download
SPICE-based analog simulation program
TINA-TI TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
document-generic User guide
CALCULATION TOOLS Download
Analog engineer's calculator
ANALOG-ENGINEER-CALC — The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
Features
  • Expedites circuit design with analog-to-digital converters (ADCs) and digital-to-analog converters (DACs)
    • Noise calculations
    • Common unit translation
  • Solves common amplifier circuit design problems
    • Gain selections using standard resistors
    • Filter configurations
    • Total noise for common amplifier configurations
  • (...)
CALCULATION TOOLS Download
Voltage Divider Determines A Set of Resistors for a Voltage Divider
VOLT-DIVIDER-CALC VOLT-DIVIDER-CALC quickly determines a set of resistors for a voltage divider. This KnowledgeBase Javascript utility can be used to find a set of resistors for a voltage divider to achieve the desired output voltage. This calculator can also be used to design non-inverting attentuation circuits.

(...)

CAD/CAE symbols

Package Pins Download
SOIC (D) 8 View options
SOT-23 (DBV) 6 View options

Ordering & quality

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos

Related videos