A newer version of this product is available

open-in-new Compare alternates
Similar functionality to the compared device
ADS114S08 ACTIVE 16-bit, 4-kSPS, 12-ch delta-sigma ADC with PGA and voltage reference for sensor measurement This device has more analog inputs (12), faster sample rate (4 kSPS), lower power, smaller package, better DC accuracy, integrated VREF and 2x IDACs

Product details

Resolution (Bits) 16 Sample rate (max) (ksps) 0.215 Number of input channels 7 Interface type SPI Architecture Delta-Sigma Input type Differential, Single-ended Multichannel configuration Multiplexed Rating Catalog Reference mode External Input voltage range (max) (V) 5.5 Input voltage range (min) (V) 0 Features PGA Operating temperature range (°C) -40 to 125 Power consumption (typ) (mW) 1.2 Analog supply (min) (V) 2.85 Analog supply voltage (max) (V) 5.5 Digital supply (min) (V) 2.7 Digital supply (max) (V) 5.5
Resolution (Bits) 16 Sample rate (max) (ksps) 0.215 Number of input channels 7 Interface type SPI Architecture Delta-Sigma Input type Differential, Single-ended Multichannel configuration Multiplexed Rating Catalog Reference mode External Input voltage range (max) (V) 5.5 Input voltage range (min) (V) 0 Features PGA Operating temperature range (°C) -40 to 125 Power consumption (typ) (mW) 1.2 Analog supply (min) (V) 2.85 Analog supply voltage (max) (V) 5.5 Digital supply (min) (V) 2.7 Digital supply (max) (V) 5.5
HTSSOP (PWP) 28 62.08 mm² 9.7 x 6.4
  • 16-Bit Low-Power Sigma Delta ADC
  • True Continuous Background Calibration at All
    Gains
  • In-Place System Calibration Using Expected
    Value Programming
  • Low-Noise Programmable Gain (1x - 128x)
  • Continuous Background Open/Short and Out of
    Range Sensor Diagnostics
  • 8 Output Data Rates (ODR) with Single-Cycle
    Settling
  • 2 Matched Excitation Current Sources from 100
    µA to 1000 µA (LMP90080/LMP90078)
  • 4-DIFF / 7-SE Inputs (LMP90080/LMP90079)
  • 2-DIFF / 4-SE Inputs (LMP90078/LMP90077)
  • 7 General Purpose Input/Output Pins
  • Chopper-Stabilized Buffer for Low Offset
  • SPI 4/3-Wire with CRC Data Link Error Detection
  • 50 Hz to 60 Hz Line Rejection at ODR ≤13.42
    SPS
  • Independent Gain and ODR Selection per
    Channel
  • Supported by WEBENCH® Sensor AFE Designer
  • Automatic Channel Sequencer
  • Key Specifications
    • ENOB/NFR: Up to 16/16 Bits
    • Offset Error (typ): 8.4 nV
    • Gain Error (typ): 7 ppm
    • Total Noise: <10 µV-rms
    • Integral Non-Linearity (INL Max): ±1 LSB
    • Output Data Rates (ODR): 1.6775–214.65 SPS
    • Analog Voltage, VA: 2.85 to 5.5 V
    • Operating Temp Range: –40°C to 125°C
    • Package: 28 Pin Exposed Pad
  • 16-Bit Low-Power Sigma Delta ADC
  • True Continuous Background Calibration at All
    Gains
  • In-Place System Calibration Using Expected
    Value Programming
  • Low-Noise Programmable Gain (1x - 128x)
  • Continuous Background Open/Short and Out of
    Range Sensor Diagnostics
  • 8 Output Data Rates (ODR) with Single-Cycle
    Settling
  • 2 Matched Excitation Current Sources from 100
    µA to 1000 µA (LMP90080/LMP90078)
  • 4-DIFF / 7-SE Inputs (LMP90080/LMP90079)
  • 2-DIFF / 4-SE Inputs (LMP90078/LMP90077)
  • 7 General Purpose Input/Output Pins
  • Chopper-Stabilized Buffer for Low Offset
  • SPI 4/3-Wire with CRC Data Link Error Detection
  • 50 Hz to 60 Hz Line Rejection at ODR ≤13.42
    SPS
  • Independent Gain and ODR Selection per
    Channel
  • Supported by WEBENCH® Sensor AFE Designer
  • Automatic Channel Sequencer
  • Key Specifications
    • ENOB/NFR: Up to 16/16 Bits
    • Offset Error (typ): 8.4 nV
    • Gain Error (typ): 7 ppm
    • Total Noise: <10 µV-rms
    • Integral Non-Linearity (INL Max): ±1 LSB
    • Output Data Rates (ODR): 1.6775–214.65 SPS
    • Analog Voltage, VA: 2.85 to 5.5 V
    • Operating Temp Range: –40°C to 125°C
    • Package: 28 Pin Exposed Pad

The LLMP9007x and LMP90080 are highly integrated, multi-channel, low-power 16-bit Sensor AFEs. The devices feature a precision, 16-bit Sigma Delta Analog-to-Digital Converter (ADC) with a low-noise programmable gain amplifier and a fully differential high impedance analog input multiplexer. A true continuous background calibration feature allows calibration at all gains and output data rates without interrupting the signal path. The background calibration feature essentially eliminates gain and offset errors across temperature and time, providing measurement accuracy without sacrificing speed and power consumption.

Another feature of the LMP9007x and LMP90080 is continuous background sensor diagnostics, allowing the detection of open and short circuit conditions and out-of-range signals, without requiring user intervention, resulting in enhanced system reliability.

Two sets of independent external reference voltage pins allow multiple ratiometric measurements. In addition, two matched programmable current sources are available in the LMP90080/LMP90078 to excite external sensors such as resistive temperature detectors and bridge sensors. Furthermore, seven GPIO pins are provided for interfacing to external LEDs and switches to simplify control across an isolation barrier.

Collectively, these features make the LMP90080/LMP90079/LMP90078/LMP90077 complete analog front-ends for low-power, precision sensor applications such as temperature, pressure, strain gauge, and industrial process control. The LMP90080/LMP90079/LMP90078/LMP90077 are ensured over the extended temperature range of –40°C to +125°C and are available in a 28-pin package with an exposed pad.

The LLMP9007x and LMP90080 are highly integrated, multi-channel, low-power 16-bit Sensor AFEs. The devices feature a precision, 16-bit Sigma Delta Analog-to-Digital Converter (ADC) with a low-noise programmable gain amplifier and a fully differential high impedance analog input multiplexer. A true continuous background calibration feature allows calibration at all gains and output data rates without interrupting the signal path. The background calibration feature essentially eliminates gain and offset errors across temperature and time, providing measurement accuracy without sacrificing speed and power consumption.

Another feature of the LMP9007x and LMP90080 is continuous background sensor diagnostics, allowing the detection of open and short circuit conditions and out-of-range signals, without requiring user intervention, resulting in enhanced system reliability.

Two sets of independent external reference voltage pins allow multiple ratiometric measurements. In addition, two matched programmable current sources are available in the LMP90080/LMP90078 to excite external sensors such as resistive temperature detectors and bridge sensors. Furthermore, seven GPIO pins are provided for interfacing to external LEDs and switches to simplify control across an isolation barrier.

Collectively, these features make the LMP90080/LMP90079/LMP90078/LMP90077 complete analog front-ends for low-power, precision sensor applications such as temperature, pressure, strain gauge, and industrial process control. The LMP90080/LMP90079/LMP90078/LMP90077 are ensured over the extended temperature range of –40°C to +125°C and are available in a 28-pin package with an exposed pad.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 3
Type Title Date
* Data sheet LMP9007x/LMP90080 Sensor AFE System: Multi-Channel, Low-Power 16-Bit Sensor AFE With True Continuous Background Calibration datasheet (Rev. H) PDF | HTML 22 Jan 2016
Application note Digital Filter Types in Delta-Sigma ADCs (Rev. A) PDF | HTML 29 Mar 2023
Application note LMP90100 True Continuous Background Calibration (Rev. B) 01 May 2013

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Support software

SNAC006 LMP90100 Sensor AFE Software Download

Evaluate the LMP90100 Sensor AFE
Supported products & hardware

Supported products & hardware

Products
Precision ADCs
LMP90077 16-Bit, 214.6-SPS, 4-ch delta-sigma ADC for sensors LMP90078 16-Bit, 214.6-SPS, 4-ch delta-sigma ADC for sensors with 2x IDACs LMP90079 16-Bit, 214.6-SPS, 7-ch delta-sigma ADC for sensors LMP90080 16-Bit, 214.6-SPS, 7-ch delta-sigma ADC for sensors with 2x IDACs LMP90097 24-Bit, 214.6-SPS, 4-ch delta-sigma ADC for sensors LMP90098 24-Bit, 214.6-SPS, 4-ch delta-sigma ADC for sensors with 2x IDACs LMP90099 24-Bit, 214.6-SPS, 7-ch delta-sigma ADC for sensors LMP90100 24-Bit, 214.6-SPS, 7-ch delta-sigma ADC for sensors with 2x IDACs LMP90080-Q1 Automotive, Multi-Channel, Low-Power 16-Bit Sensor AFE with True Continuous Background Calibration
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
HTSSOP (PWP) 28 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos