General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers
Product details
Parameters
Package | Pins | Size
Features
- For V+ = 5 V and V− = 0 V, unless otherwise specified
- LMV321-N, LMV358-N, and LMV324-N are available in automotive AEC-Q100 grade 1 and grade 3 versions
- Ensured 2.7-V and 5-V performance
- No crossover distortion
- Industrial temperature range −40°C to +125°C
- Gain-bandwidth product 1 MHz
- Low supply current
- LMV321-N 130 µA
- LMV358-N 210 µA
- LMV324-N 410 µA
- Rail-to-rail output swing at 10 kΩ V+− 10 mV and V−+ 65 mV
- VCM range −0.2 V to V+− 0.8 V
All trademarks are the property of their respective owners.
Description
The LMV358-N and LMV324-N are low-voltage (2.7 V to 5.5 V) versions of the dual and quad commodity op amps LM358 and LM324 (5 V to 30 V). The LMV321-N is the single channel version. The LMV321-N, LMV358-N, and LMV324-N are the most cost-effective solutions for applications where low-voltage operation, space efficiency, and low price are important. They offer specifications that meet or exceed the familiar LM358 and LM324. The LMV321-N, LMV358-N, and LMV324-N have rail-to-rail output swing capability and the input common-mode voltage range includes ground. They all exhibit excellent speed to power ratio, achieving 1 MHz of bandwidth and 1-V/µs slew rate with low supply current.
The LMV321-N is available in the space saving 5-Pin SC70, which is approximately half the size of the 5-Pin SOT23. The small package saves space on PC boards and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.
The chips are built with Texas Instrumentss advanced submicron silicon-gate BiCMOS process. The LMV321-N/LMV358-N/LMV324-N have bipolar input and output stages for improved noise performance and higher output current drive.
Technical documentation
Type | Title | Date | |
---|---|---|---|
* | Datasheet | LMV3xx-N/-Q1 Single/Dual/Quad General Purpose, Low V, Rail-to-Rail Output Op Amp datasheet (Rev. K) | Aug. 19, 2020 |
Technical articles | What is an op amp? | Jan. 21, 2020 | |
Technical articles | How to lay out a PCB for high-performance, low-side current-sensing designs | Feb. 06, 2018 | |
Technical articles | Low-side current sensing for high-performance cost-sensitive applications | Jan. 22, 2018 | |
Technical articles | Voltage and current sensing in HEV/EV applications | Nov. 22, 2017 | |
E-book | The Signal e-book: A compendium of blog posts on op amp design topics | Mar. 28, 2017 |
Design & development
For additional terms or required resources, click any title below to view the detail page where available.Hardware development
Description
Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.
The (...)
Features
- Simplifies prototyping of SMT IC’s
- Supports 6 common package types
- Low Cost
Description
Features
- 10 circuit configurations to choose from: Non-Inverting, Inverting, Active Filters, Difference Amplifier with Reference Buffer, and more!
- Multiple interface options: SMA, Header, Breadboard, Wire
- Designed for 0805 size components; 0603 size friendly
- Circuit schematic provided in silkscreen on the back (...)
Design tools & simulation
Features
- Leverages Cadence PSpice Technology
- Preinstalled library with a suite of digital models to enable worst-case timing analysis
- Dynamic updates ensure you have access to most current device models
- Optimized for simulation speed without loss of accuracy
- Supports simultaneous analysis of multiple products
- (...)
Features
- Expedites circuit design with analog-to-digital converters (ADCs) and digital-to-analog converters (DACs)
- Noise calculations
- Common unit translation
- Solves common amplifier circuit design problems
- Gain selections using standard resistors
- Filter configurations
- Total noise for common amplifier configurations
- (...)
CAD/CAE symbols
Package | Pins | Download |
---|---|---|
SOIC (D) | 8 | View options |
VSSOP (DGK) | 8 | View options |
Ordering & quality
- RoHS
- REACH
- Device marking
- Lead finish/Ball material
- MSL rating/Peak reflow
- MTBF/FIT estimates
- Material content
- Qualification summary
- Ongoing reliability monitoring
Support & training
TI E2E™ forums with technical support from TI engineers
Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.
If you have questions about quality, packaging or ordering TI products, see TI support.