A newer version of this product is available

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
TLV9064 ACTIVE Quad, 5.5-V, 10-MHz, RRIO operational amplifier for cost-optimized applications Higher slew rate (6.5V/µs), wider supply (1.8 V to 5.5 V), designed for cost-optimized applications

Product details

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Rail-to-rail In to V-, Out GBW (typ) (MHz) 12 Slew rate (typ) (V/µs) 3.2 Vos (offset voltage at 25°C) (max) (mV) 1.8 Iq per channel (typ) (mA) 0.119 Vn at 1 kHz (typ) (nV√Hz) 17 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 6.6 Input bias current (max) (pA) 120000 CMRR (typ) (dB) 100 Iout (typ) (A) 0.015 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) 0 Input common mode headroom (to positive supply) (typ) (V) -0.9 Output swing headroom (to negative supply) (typ) (V) 0.07 Output swing headroom (to positive supply) (typ) (V) -0.075
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 5.5 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Rail-to-rail In to V-, Out GBW (typ) (MHz) 12 Slew rate (typ) (V/µs) 3.2 Vos (offset voltage at 25°C) (max) (mV) 1.8 Iq per channel (typ) (mA) 0.119 Vn at 1 kHz (typ) (nV√Hz) 17 Rating Catalog Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 6.6 Input bias current (max) (pA) 120000 CMRR (typ) (dB) 100 Iout (typ) (A) 0.015 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) 0 Input common mode headroom (to positive supply) (typ) (V) -0.9 Output swing headroom (to negative supply) (typ) (V) 0.07 Output swing headroom (to positive supply) (typ) (V) -0.075
TSSOP (PW) 14 32 mm² 5 x 6.4
  • Typical 5-V Supply, Unless Otherwise Noted
  • Specified 3-V and 5-V Performance
  • Low Power Supply Current
    • LMV651: 116 µA
    • LMV652: 118 µA per Amplifier
    • LMV654: 122 µA per Amplifier
  • High Unity-Gain Bandwidth: 12 MHz
  • Maximum Input Offset Voltage: 1.5 mV
  • CMRR: 100 dB
  • PSRR: 95 dB
  • Input Referred Voltage Noise: 17 nV/√Hz
  • Output Swing With 2-kΩ Load, 120 mV from Rail
  • Total Harmonic Distortion: 0.003% at 1 kHz, 2 kΩ
  • Temperature Range: –40°C to 125°C
  • Typical 5-V Supply, Unless Otherwise Noted
  • Specified 3-V and 5-V Performance
  • Low Power Supply Current
    • LMV651: 116 µA
    • LMV652: 118 µA per Amplifier
    • LMV654: 122 µA per Amplifier
  • High Unity-Gain Bandwidth: 12 MHz
  • Maximum Input Offset Voltage: 1.5 mV
  • CMRR: 100 dB
  • PSRR: 95 dB
  • Input Referred Voltage Noise: 17 nV/√Hz
  • Output Swing With 2-kΩ Load, 120 mV from Rail
  • Total Harmonic Distortion: 0.003% at 1 kHz, 2 kΩ
  • Temperature Range: –40°C to 125°C

TI’s LMV65x devices are high-performance, low-power operational amplifier ICs implemented with TI’s advanced VIP50 process. This family of parts features 12 MHz of bandwidth while consuming only 116 µA of current, which is an exceptional bandwidth to power ratio in this operational amplifier class. The LMV65x devices are unity-gain stable and provide an excellent solution for general-purpose amplification in low-voltage, low-power applications.

This family of low-voltage, low-power amplifiers provides superior performance and economy in terms of power and space usage. These operational amplifiers have a maximum input offset voltage of 1.5 mV, a rail-to-rail output stage, and an input common-mode voltage range that includes ground. The LMV65x provide a PSRR of 95 dB, a CMRR of 100 dB, and a total harmonic distortion (THD) of 0.003% at 1-kHz frequency and 2-kΩ load.

The operating supply voltage range for this family of parts is from 2.7 V and 5.5 V. These operational amplifiers can operate over a wide temperature range (–40°C to 125°C), making them ideal for automotive applications, sensor applications, and portable equipment applications. The LMV651 is offered in the ultra-tiny 5-pin SC70 and 5-pin SOT-23 package. The LMV652 is offered in an 8-pin VSSOP package. The LMV654 is offered in a 14-pin TSSOP package.

TI’s LMV65x devices are high-performance, low-power operational amplifier ICs implemented with TI’s advanced VIP50 process. This family of parts features 12 MHz of bandwidth while consuming only 116 µA of current, which is an exceptional bandwidth to power ratio in this operational amplifier class. The LMV65x devices are unity-gain stable and provide an excellent solution for general-purpose amplification in low-voltage, low-power applications.

This family of low-voltage, low-power amplifiers provides superior performance and economy in terms of power and space usage. These operational amplifiers have a maximum input offset voltage of 1.5 mV, a rail-to-rail output stage, and an input common-mode voltage range that includes ground. The LMV65x provide a PSRR of 95 dB, a CMRR of 100 dB, and a total harmonic distortion (THD) of 0.003% at 1-kHz frequency and 2-kΩ load.

The operating supply voltage range for this family of parts is from 2.7 V and 5.5 V. These operational amplifiers can operate over a wide temperature range (–40°C to 125°C), making them ideal for automotive applications, sensor applications, and portable equipment applications. The LMV651 is offered in the ultra-tiny 5-pin SC70 and 5-pin SOT-23 package. The LMV652 is offered in an 8-pin VSSOP package. The LMV654 is offered in a 14-pin TSSOP package.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 2
Type Title Date
* Data sheet LMV65x 12-MHz, Low Voltage, Low Power Amplifiers datasheet (Rev. K) PDF | HTML 27 May 2016
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

LMV654 PSPICE Model

SNOM066.ZIP (1 KB) - PSpice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
TSSOP (PW) 14 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos