Product details

Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 5 Total supply voltage (Min) (+5V=5, +/-5V=10) 1.8 Rail-to-rail In to V-, Out GBW (Typ) (MHz) 17 Slew rate (Typ) (V/us) 9.5 Vos (offset voltage @ 25 C) (Max) (mV) 1.35 Iq per channel (Typ) (mA) 1.15 Vn at 1 kHz (Typ) (nV/rtHz) 5.8 Rating Automotive Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 1 Features Input bias current (Max) (pA) 1 CMRR (Typ) (dB) 100 Output current (Typ) (mA) 21 Architecture CMOS
Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 5 Total supply voltage (Min) (+5V=5, +/-5V=10) 1.8 Rail-to-rail In to V-, Out GBW (Typ) (MHz) 17 Slew rate (Typ) (V/us) 9.5 Vos (offset voltage @ 25 C) (Max) (mV) 1.35 Iq per channel (Typ) (mA) 1.15 Vn at 1 kHz (Typ) (nV/rtHz) 5.8 Rating Automotive Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 1 Features Input bias current (Max) (pA) 1 CMRR (Typ) (dB) 100 Output current (Typ) (mA) 21 Architecture CMOS
SOT-23 (DBV) 5 5 mm² 2.9 x 1.6

    (Typical 5V Supply, Unless Otherwise Noted)

  • Input Referred Voltage Noise 5.8 nV/√Hz
  • Input Bias Current 100 fA
  • Unity Gain Bandwidth 17 MHz
  • Supply Current per Channel
    • LMV796/LMV796Q 1.15 mA
    • LMV797 1.30 mA
  • Rail-to-Rail Output Swing
    • @ 10 kΩ Load 25 mV from Rail
    • @ 2 kΩ Load 45 mV from Rail
  • Guaranteed 2.5V and 5.0V Performance
  • Total Harmonic Distortion 0.01% @ 1kHz, 600Ω
  • Temperature Range −40°C to 125°C
  • LMV796Q is an Automotive Grade Product that is AEC-Q100 Grade 1 Qualified and is Manufactured on an Automotive Grade Flow.

All trademarks are the property of their respective owners.

    (Typical 5V Supply, Unless Otherwise Noted)

  • Input Referred Voltage Noise 5.8 nV/√Hz
  • Input Bias Current 100 fA
  • Unity Gain Bandwidth 17 MHz
  • Supply Current per Channel
    • LMV796/LMV796Q 1.15 mA
    • LMV797 1.30 mA
  • Rail-to-Rail Output Swing
    • @ 10 kΩ Load 25 mV from Rail
    • @ 2 kΩ Load 45 mV from Rail
  • Guaranteed 2.5V and 5.0V Performance
  • Total Harmonic Distortion 0.01% @ 1kHz, 600Ω
  • Temperature Range −40°C to 125°C
  • LMV796Q is an Automotive Grade Product that is AEC-Q100 Grade 1 Qualified and is Manufactured on an Automotive Grade Flow.

All trademarks are the property of their respective owners.

The LMV796/LMV796Q (Single) and the LMV797 (Dual) low noise, CMOS input operational amplifiers offer a low input voltage noise density of 5.8 nV/√Hz while consuming only 1.15 mA (LMV796/LMV796Q) of quiescent current. The LMV796/LMV796Q and LMV797 are unity gain stable op amps and have gain bandwidth of 17 MHz. The LMV796/LMV796Q/ LMV797 have a supply voltage range of 1.8V to 5.5V and can operate from a single supply. The LMV796/LMV796Q/LMV797 each feature a rail-to-rail output stage capable of driving a 600Ω load and sourcing as much as 60 mA of current.

The LMV796/LMV796Q family provides optimal performance in low voltage and low noise systems. A CMOS input stage, with typical input bias currents in the range of a few femtoAmperes, and an input common mode voltage range, which includes ground, make the LMV796/LMV796Q and the LMV797 ideal for low power sensor applications.

The LMV796/LMV796Q/LMV797 are manufactured using TI’s advanced VIP50 process. The LMV796/ LMV796Q are offered in 5–pin SOT-23 package. The LMV797 is offered in 8–pin VSSOP package.

The LMV796/LMV796Q (Single) and the LMV797 (Dual) low noise, CMOS input operational amplifiers offer a low input voltage noise density of 5.8 nV/√Hz while consuming only 1.15 mA (LMV796/LMV796Q) of quiescent current. The LMV796/LMV796Q and LMV797 are unity gain stable op amps and have gain bandwidth of 17 MHz. The LMV796/LMV796Q/ LMV797 have a supply voltage range of 1.8V to 5.5V and can operate from a single supply. The LMV796/LMV796Q/LMV797 each feature a rail-to-rail output stage capable of driving a 600Ω load and sourcing as much as 60 mA of current.

The LMV796/LMV796Q family provides optimal performance in low voltage and low noise systems. A CMOS input stage, with typical input bias currents in the range of a few femtoAmperes, and an input common mode voltage range, which includes ground, make the LMV796/LMV796Q and the LMV797 ideal for low power sensor applications.

The LMV796/LMV796Q/LMV797 are manufactured using TI’s advanced VIP50 process. The LMV796/ LMV796Q are offered in 5–pin SOT-23 package. The LMV797 is offered in 8–pin VSSOP package.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 6
Type Title Date
* Data sheet LMV796/LMV796Q/LMV797 17 MHz, Low Noise, CMOS Input, 1.8V Op Amps datasheet (Rev. D) 25 Mar 2013
Technical article What is an op amp? 21 Jan 2020
Technical article How to lay out a PCB for high-performance, low-side current-sensing designs 06 Feb 2018
Technical article Low-side current sensing for high-performance cost-sensitive applications 22 Jan 2018
Technical article Voltage and current sensing in HEV/EV applications 22 Nov 2017
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.

The (...)

In stock
Limit: 5
Evaluation board

DIYAMP-EVM — Universal Do-It-Yourself (DIY) Amplifier Circuit Evaluation Module

The DIYAMP-EVM is a unique evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling you to quickly evaluate design concepts and verify simulations. It is available in three industry-standard packages (SC70, SOT23, SOIC) and 12 (...)
Simulation model

LMV796 PSPICE Model

SNOM044.ZIP (1 KB) - PSpice Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Reference designs

PMP22650 — GaN-based, 6.6-kW, bidirectional, onboard charger reference design

The PMP22650 reference design is a 6.6-kW, bidirectional, onboard charger. The design employs a two-phase totem pole PFC and a full-bridge CLLLC converter with synchronous rectification. The CLLLC utilizes both frequency and phase modulation to regulate the output across the required regulation (...)
Package Pins Download
SOT-23 (DBV) 5 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos