Dual MicroPower RRIO Operational Amplifier with Wide Voltage Supply Range and High CMRR
Product details
Parameters
Package | Pins | Size
Features
- Micro-Power Operation... < 1 uA/Channel
- Input Common-Mode Range Exceeds the Rails... -0.1 V to VCC + 5 V
- Reverse Battery Protection Up To 18 V
- Rail-to-Rail Input/Output
- Gain Bandwidth Product... 5.5 kHz
- Supply Voltage Range... 2.5 V to 16 V
- Specified Temperature Range
- TA = 0°C to 70°C... Commercial Grade
- TA = -40°C to 125°C... Industrial Grade
- Ultrasmall Packaging
- 5-Pin SOT-23 (TLV2401)
- 8-Pin MSOP (TLV2402)
- Universal OpAmp EVM (Refer to the EVM Selection Guide SLOU060)
Description
The TLV240x family of single-supply operational amplifiers has the lowest supply current available today at only 880 nA per channel. Reverse battery protection guards the amplifier from an over-current condition due to improper battery installation. For harsh environments, the inputs can be taken 5 V above the positive supply rail without damage to the device.
The low supply current is coupled with extremely low input bias currents enabling them to be used with mega- resistors making them ideal for portable, long active life, applications. DC accuracy is ensured with a low typical offset voltage as low as 390 uV, CMRR of 120 dB and minimum open loop gain of 130 V/mV at 2.7 V.
The maximum recommended supply voltage is as high as 16 V and ensured operation down to 2.5 V, with electrical characteristics specified at 2.7 V, 5 V and 15 V. The 2.5-V operation makes it compatible with Li-Ion battery-powered systems and many micro-power microcontrollers available today including TI's MSP430.
All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP, and quads in TSSOP.
Technical documentation
Type | Title | Date | |
---|---|---|---|
* | Datasheet | Family of 880-nA/CH Rail-to-Rail I/O Op Amp w/ Reverse Batt Protection datasheet (Rev. B) | Nov. 08, 2000 |
Technical article | What is an op amp? | Jan. 21, 2020 | |
Technical article | How to lay out a PCB for high-performance, low-side current-sensing designs | Feb. 06, 2018 | |
Technical article | Low-side current sensing for high-performance cost-sensitive applications | Jan. 22, 2018 | |
Technical article | Voltage and current sensing in HEV/EV applications | Nov. 22, 2017 | |
E-book | The Signal e-book: A compendium of blog posts on op amp design topics | Mar. 28, 2017 | |
Application note | TLV2401, TLV2402, TLV2404 EMI Immunity Performance | May 24, 2013 |
Design & development
For additional terms or required resources, click any title below to view the detail page where available.Hardware development
Description
Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.
The (...)
Features
- Simplifies prototyping of SMT IC’s
- Supports 6 common package types
- Low Cost
Description
Features
- 10 circuit configurations to choose from: Non-Inverting, Inverting, Active Filters, Difference Amplifier with Reference Buffer, and more!
- Multiple interface options: SMA, Header, Breadboard, Wire
- Designed for 0805 size components; 0603 size friendly
- Circuit schematic provided in silkscreen on the back (...)
Design tools & simulation
Features
- Leverages Cadence PSpice Technology
- Preinstalled library with a suite of digital models to enable worst-case timing analysis
- Dynamic updates ensure you have access to most current device models
- Optimized for simulation speed without loss of accuracy
- Supports simultaneous analysis of multiple products
- (...)
Features
- Expedites circuit design with analog-to-digital converters (ADCs) and digital-to-analog converters (DACs)
- Noise calculations
- Common unit translation
- Solves common amplifier circuit design problems
- Gain selections using standard resistors
- Filter configurations
- Total noise for common amplifier configurations
- (...)
CAD/CAE symbols
Package | Pins | Download |
---|---|---|
PDIP (P) | 8 | View options |
SOIC (D) | 8 | View options |
VSSOP (DGK) | 8 | View options |
Ordering & quality
- RoHS
- REACH
- Device marking
- Lead finish/Ball material
- MSL rating/Peak reflow
- MTBF/FIT estimates
- Material content
- Qualification summary
- Ongoing reliability monitoring
Support & training
TI E2E™ forums with technical support from TI engineers
Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.
If you have questions about quality, packaging or ordering TI products, see TI support.