Product details

Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 6 Total supply voltage (Min) (+5V=5, +/-5V=10) 2.7 Rail-to-rail In, Out GBW (Typ) (MHz) 0.22 Slew rate (Typ) (V/us) 0.11 Vos (offset voltage @ 25 C) (Max) (mV) 1 Iq per channel (Typ) (mA) 0.023 Vn at 1 kHz (Typ) (nV/rtHz) 52 Rating Catalog Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 0.3 Features Input bias current (Max) (pA) 5000 CMRR (Typ) (dB) 80 Output current (Typ) (mA) 12 Architecture Bipolar
Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 6 Total supply voltage (Min) (+5V=5, +/-5V=10) 2.7 Rail-to-rail In, Out GBW (Typ) (MHz) 0.22 Slew rate (Typ) (V/us) 0.11 Vos (offset voltage @ 25 C) (Max) (mV) 1 Iq per channel (Typ) (mA) 0.023 Vn at 1 kHz (Typ) (nV/rtHz) 52 Rating Catalog Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 0.3 Features Input bias current (Max) (pA) 5000 CMRR (Typ) (dB) 80 Output current (Typ) (mA) 12 Architecture Bipolar
PDIP (P) 8 93 mm² 9.81 x 9.43 SOIC (D) 8 19 mm² 3.91 x 4.9 SOIC (D) 8 19 mm² 4.9 x 3.9
  • Supply Current...23 µA/Channel
  • Gain-Bandwidth Product...220 kHz
  • Output Drive Capability...±10 mA
  • Input Offset Voltage...20 µV (typ)
  • VDD Range...2.7 V to 6 V
  • Power Supply Rejection Ratio...106 dB
  • Ultralow-Power Shutdown Mode
    IDD ...16 nA/ch
  • Rail-To-Rail Input/Output (RRIO)
  • Ultrasmall Packaging
    • 5 or 6 Pin SOT-23 (TLV2450/1)
    • 8 or 10 Pin MSOP (TLV2452/3)
  • Supply Current...23 µA/Channel
  • Gain-Bandwidth Product...220 kHz
  • Output Drive Capability...±10 mA
  • Input Offset Voltage...20 µV (typ)
  • VDD Range...2.7 V to 6 V
  • Power Supply Rejection Ratio...106 dB
  • Ultralow-Power Shutdown Mode
    IDD ...16 nA/ch
  • Rail-To-Rail Input/Output (RRIO)
  • Ultrasmall Packaging
    • 5 or 6 Pin SOT-23 (TLV2450/1)
    • 8 or 10 Pin MSOP (TLV2452/3)

The TLV245x is a family of rail-to-rail input/output operational amplifiers that sets a new performance point for supply current and ac performance. These devices consume a mere 23 µA/channel while offering 220 kHz of gain-bandwidth product, much higher than competitive devices with similar supply current levels. Along with increased ac performance, the amplifier provides high output drive capability, solving a major shortcoming of older micropower rail-to-rail input/output operational amplifiers. The TLV245x can swing to within 250 mV of each supply rail while driving a 2.5-mA load. Both the inputs and outputs swing rail-to-rail for increased dynamic range in low-voltage applications. This performance makes the TLV245x family ideal for portable medical equipment, patient monitoring systems, and data acquisition circuits.

Three members of the family (TLV2450/3/5) offer a shutdown terminal for conserving battery life in portable applications. During shutdown, the outputs are placed in a high-impedance state and the amplifier consumes only 16 nA/channel. The family is fully specified at 3 V and 5 V across an expanded industrial temperature range (–40°C to 125°C). The singles and duals are available in the SOT23 and MSOP packages, while the quads are available in TSSOP. The TLV2450 offers an amplifier with shutdown functionality all in a 6-pin SOT23 package, making it perfect for high density circuits.

The TLV245x is a family of rail-to-rail input/output operational amplifiers that sets a new performance point for supply current and ac performance. These devices consume a mere 23 µA/channel while offering 220 kHz of gain-bandwidth product, much higher than competitive devices with similar supply current levels. Along with increased ac performance, the amplifier provides high output drive capability, solving a major shortcoming of older micropower rail-to-rail input/output operational amplifiers. The TLV245x can swing to within 250 mV of each supply rail while driving a 2.5-mA load. Both the inputs and outputs swing rail-to-rail for increased dynamic range in low-voltage applications. This performance makes the TLV245x family ideal for portable medical equipment, patient monitoring systems, and data acquisition circuits.

Three members of the family (TLV2450/3/5) offer a shutdown terminal for conserving battery life in portable applications. During shutdown, the outputs are placed in a high-impedance state and the amplifier consumes only 16 nA/channel. The family is fully specified at 3 V and 5 V across an expanded industrial temperature range (–40°C to 125°C). The singles and duals are available in the SOT23 and MSOP packages, while the quads are available in TSSOP. The TLV2450 offers an amplifier with shutdown functionality all in a 6-pin SOT23 package, making it perfect for high density circuits.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 7
Type Title Date
* Data sheet TLV245x, TLV245xA: 23-uA 220-KHz Rail-to-Rail Input/Output Op Amps With Shutdown datasheet (Rev. F) 19 Jan 2005
Technical article What is an op amp? 21 Jan 2020
Technical article How to lay out a PCB for high-performance, low-side current-sensing designs 06 Feb 2018
Technical article Low-side current sensing for high-performance cost-sensitive applications 22 Jan 2018
Technical article Voltage and current sensing in HEV/EV applications 22 Nov 2017
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note Use of Rail-to-Rail Operational Amplifiers (Rev. A) 22 Dec 1999

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.

The (...)

In stock
Limit: 5
Evaluation board

DIYAMP-EVM — Universal Do-It-Yourself (DIY) Amplifier Circuit Evaluation Module

The DIYAMP-EVM is a unique evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling you to quickly evaluate design concepts and verify simulations. It is available in three industry-standard packages (SC70, SOT23, SOIC) and 12 (...)
Simulation model

TLV245xA PSpice 5V Supply Voltage Model

SLOJ017.ZIP (0 KB) - PSpice Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Package Pins Download
PDIP (P) 8 View options
SOIC (D) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos