Product details

Number of channels (#) 4 Total supply voltage (Max) (+5V=5, +/-5V=10) 16 Total supply voltage (Min) (+5V=5, +/-5V=10) 2.7 Rail-to-rail In to V-, Out GBW (Typ) (MHz) 3 Slew rate (Typ) (V/us) 2.1 Vos (offset voltage @ 25 C) (Max) (mV) 5 Iq per channel (Typ) (mA) 0.55 Vn at 1 kHz (Typ) (nV/rtHz) 39 Rating Catalog Operating temperature range (C) -40 to 125, 0 to 70 Offset drift (Typ) (uV/C) 2 Features Input bias current (Max) (pA) 60 CMRR (Typ) (dB) 80 Output current (Typ) (mA) 7 Architecture CMOS
Number of channels (#) 4 Total supply voltage (Max) (+5V=5, +/-5V=10) 16 Total supply voltage (Min) (+5V=5, +/-5V=10) 2.7 Rail-to-rail In to V-, Out GBW (Typ) (MHz) 3 Slew rate (Typ) (V/us) 2.1 Vos (offset voltage @ 25 C) (Max) (mV) 5 Iq per channel (Typ) (mA) 0.55 Vn at 1 kHz (Typ) (nV/rtHz) 39 Rating Catalog Operating temperature range (C) -40 to 125, 0 to 70 Offset drift (Typ) (uV/C) 2 Features Input bias current (Max) (pA) 60 CMRR (Typ) (dB) 80 Output current (Typ) (mA) 7 Architecture CMOS
PDIP (N) 14 181 mm² 19.3 x 9.4 SOIC (D) 14 52 mm² 8.65 x 6 TSSOP (PW) 14 32 mm² 5 x 6.4
  • Rail-to-Rail Output
  • Wide Bandwidth: 3 MHz
  • High Slew Rate: 2.4 V/µs
  • Supply Voltage Range: 2.7 V to 16 V
  • Supply Current: 550 µA/Channel
  • Input Noise Voltage: 39 nV/√Hz
  • Input Bias Current: 1 pA
  • Specified Temperature Range:
    • Commercial Grade: 0°C to 70°C
    • Industrial Grade: –40°C to 125°C
  • Ultrasmall Packaging:
    • 5-Pin SOT-23 (TLV271)
    • 8-Pin MSOP (TLV272)
  • Ideal Upgrade for TLC72x Family
  • Rail-to-Rail Output
  • Wide Bandwidth: 3 MHz
  • High Slew Rate: 2.4 V/µs
  • Supply Voltage Range: 2.7 V to 16 V
  • Supply Current: 550 µA/Channel
  • Input Noise Voltage: 39 nV/√Hz
  • Input Bias Current: 1 pA
  • Specified Temperature Range:
    • Commercial Grade: 0°C to 70°C
    • Industrial Grade: –40°C to 125°C
  • Ultrasmall Packaging:
    • 5-Pin SOT-23 (TLV271)
    • 8-Pin MSOP (TLV272)
  • Ideal Upgrade for TLC72x Family

Operating from 2.7 V to 16 V over the extended industrial temperature range from –40°C to +125°C, the TLV27x is a low power, wide bandwidth operational amplifier (opamp) with rail to rail output. This makes it an ideal alternative to the TLC27x family for applications where rail-to-rail output swings are essential. The TLV27x provides 3-MHz bandwidth from only 550 µA.

Like the TLC27x, the TLV27x is fully specified for 5-V and ±5-V supplies. The maximum recommended supply voltage is 16 V, which allows the devices to be operated from a variety of rechargeable cells (±8 V supplies down to ±1.35 V).

The CMOS inputs enable use in high-impedance sensor interfaces, with the lower voltage operation making an attractive alternative for the TLC27x in battery-powered applications.

All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP, and quads in the TSSOP package.

The 2.7-V operation makes it compatible with Li-Ion powered systems and the operating supply voltage range of many micropower microcontrollers available today including TI’s MSP430.

Operating from 2.7 V to 16 V over the extended industrial temperature range from –40°C to +125°C, the TLV27x is a low power, wide bandwidth operational amplifier (opamp) with rail to rail output. This makes it an ideal alternative to the TLC27x family for applications where rail-to-rail output swings are essential. The TLV27x provides 3-MHz bandwidth from only 550 µA.

Like the TLC27x, the TLV27x is fully specified for 5-V and ±5-V supplies. The maximum recommended supply voltage is 16 V, which allows the devices to be operated from a variety of rechargeable cells (±8 V supplies down to ±1.35 V).

The CMOS inputs enable use in high-impedance sensor interfaces, with the lower voltage operation making an attractive alternative for the TLC27x in battery-powered applications.

All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP, and quads in the TSSOP package.

The 2.7-V operation makes it compatible with Li-Ion powered systems and the operating supply voltage range of many micropower microcontrollers available today including TI’s MSP430.

Download

Similar products you might be interested in

open-in-new Compare products
Drop-in replacement with upgraded functionality to the compared device.
NEW TLV9154 ACTIVE Quad, 16-V, 4.5-MHz, low-power operational amplifier Pin-to-pin upgrade with improved performance: lower Vos(0.75mV) and noise(10nV/√Hz), higher slew rate(21V/us) and output current(75mA)

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 7
Type Title Date
* Data sheet TLV27x Family of 550-µA/Ch, 3-MHz, Rail-to-Rail Output Operational Amplifiers datasheet (Rev. E) 30 Nov 2016
Technical article What is an op amp? 21 Jan 2020
Technical article How to lay out a PCB for high-performance, low-side current-sensing designs 06 Feb 2018
Technical article Low-side current sensing for high-performance cost-sensitive applications 22 Jan 2018
Technical article Voltage and current sensing in HEV/EV applications 22 Nov 2017
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note TLV271, TLV272, TLV274 EMI Immunity Performance 19 Dec 2012

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Reference designs

PMP9010 — Range boost converter reference design to drive two strings of automotive LEDs

This wide input voltage range boost operates from an input of 9V - 32V and regulates current in two strings of 13 LEDs. A second control loop monitors and regulates the input current during drop outs or faults. Discrete linear regulators at the bottom of each string control the individual string (...)
Package Pins Download
PDIP (N) 14 View options
SOIC (D) 14 View options
TSSOP (PW) 14 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos