Product details

DSP 1 C64x DSP MHz (Max) 500, 600, 720 CPU 32-/64-bit Operating system DSP/BIOS Rating Catalog Operating temperature range (C) -40 to 105, 0 to 90
DSP 1 C64x DSP MHz (Max) 500, 600, 720 CPU 32-/64-bit Operating system DSP/BIOS Rating Catalog Operating temperature range (C) -40 to 105, 0 to 90
FCBGA (GLZ) 532 529 mm² 23 x 23 FCBGA (ZLZ) 532 529 mm² 23 x 23
  • Highest-Performance Fixed-Point Digital Signal Processors (DSPs)
    • 2-, 1.67-, 1.39-ns Instruction Cycle Time
    • 500-, 600-, 720-MHz Clock Rate
    • Eight 32-Bit Instructions/Cycle
    • Twenty-Eight Operations/Cycle
    • 4000, 4800, 5760 MIPS
    • Fully Software-Compatible With C62x™
    • C6414/15/16 Devices Pin-Compatible
  • VelociTI.2™ Extensions to VelociTI™ Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x™ DSP Core
    • Eight Highly Independent Functional Units With VelociTI.2™ Extensions:
      • Six ALUs (32-/40-Bit), Each Supports Single 32-Bit, Dual 16-Bit, or Quad 8-Bit Arithmetic per Clock Cycle
      • Two Multipliers Support Four 16 x 16-Bit Multiplies (32-Bit Results) per Clock Cycle or Eight 8 x 8-Bit Multiplies (16-Bit Results) per Clock Cycle
    • Non-Aligned Load-Store Architecture
    • 64 32-Bit General-Purpose Registers
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
  • Instruction Set Features
    • Byte-Addressable (8-/16-/32-/64-Bit Data)
    • 8-Bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • VelociTI.2™ Increased Orthogonality
  • Viterbi Decoder Coprocessor (VCP) [C6416]
    • Supports Over 600 7.95-Kbps AMR
    • Programmable Code Parameters
  • Turbo Decoder Coprocessor (TCP) [C6416]
    • Supports up to 7 2-Mbps or 43 384-Kbps 3GPP (6 Iterations)
    • Programmable Turbo Code and Decoding Parameters
  • L1/L2 Memory Architecture
    • 128K-Bit (16K-Byte) L1P Program Cache (Direct Mapped)
    • 128K-Bit (16K-Byte) L1D Data Cache (2-Way Set-Associative)
    • 8M-Bit (1024K-Byte) L2 Unified Mapped RAM/Cache (Flexible Allocation)
  • Two External Memory Interfaces (EMIFs)
    • One 64-Bit (EMIFA), One 16-Bit (EMIFB)
    • Glueless Interface to Asynchronous Memories (SRAM and EPROM) and Synchronous Memories (SDRAM, SBSRAM, ZBT SRAM, and FIFO)
    • 1280M-Byte Total Addressable External Memory Space
  • Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent Channels)
  • Host-Port Interface (HPI)
    • User-Configurable Bus Width (32-/16-Bit)
  • 32-Bit/33-MHz, 3.3-V PCI Master/Slave Interface Conforms to PCI Specification 2.2 [C6415/C6416 ]
    • Three PCI Bus Address Registers:
         Prefetchable Memory
         Non-Prefetchable Memory I/O
    • Four-Wire Serial EEPROM Interface
    • PCI Interrupt Request Under DSP Program Control
    • DSP Interrupt Via PCI I/O Cycle
  • Three Multichannel Buffered Serial Ports
    • Direct Interface to T1/E1, MVIP, SCSA Framers
    • Up to 256 Channels Each
    • ST-Bus-Switching-, AC97-Compatible
    • Serial Peripheral Interface (SPI) Compatible (Motorola™)
  • Three 32-Bit General-Purpose Timers
  • Universal Test and Operations PHY Interface for ATM (UTOPIA) [C6415/C6416]
    • UTOPIA Level 2 Slave ATM Controller
    • 8-Bit Transmit and Receive Operations up to 50 MHz per Direction
    • User-Defined Cell Format up to 64 Bytes
  • Sixteen General-Purpose I/O (GPIO) Pins
  • Flexible PLL Clock Generator
  • IEEE-1149.1 (JTAG) Boundary-Scan-Compatible
  • 532-Pin Ball Grid Array (BGA) Package (GLZ, ZLZ and CLZ Suffixes), 0.8-mm Ball Pitch
  • 0.13-µm/6-Level Cu Metal Process (CMOS)
  • 3.3-V I/Os, 1.2-V/1.25-V Internal (500 MHz)
  • 3.3-V I/Os, 1.4-V Internal (600 and 720 MHz)

C62x, VelociTI.2, VelociTI, and TMS320C64x are trademarks of Texas Instruments.
Motorola is a trademark of Motorola, Inc.
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.
Windows is a registered trademark of the Microsoft Corporation.
Other trademarks are the property of their respective owners.
Throughout the remainder of this document, the TMS320C6414, TMS320C6415, and TMS320C6416 shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414, C6415, or C6416.
These C64xdevices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.

  • Highest-Performance Fixed-Point Digital Signal Processors (DSPs)
    • 2-, 1.67-, 1.39-ns Instruction Cycle Time
    • 500-, 600-, 720-MHz Clock Rate
    • Eight 32-Bit Instructions/Cycle
    • Twenty-Eight Operations/Cycle
    • 4000, 4800, 5760 MIPS
    • Fully Software-Compatible With C62x™
    • C6414/15/16 Devices Pin-Compatible
  • VelociTI.2™ Extensions to VelociTI™ Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x™ DSP Core
    • Eight Highly Independent Functional Units With VelociTI.2™ Extensions:
      • Six ALUs (32-/40-Bit), Each Supports Single 32-Bit, Dual 16-Bit, or Quad 8-Bit Arithmetic per Clock Cycle
      • Two Multipliers Support Four 16 x 16-Bit Multiplies (32-Bit Results) per Clock Cycle or Eight 8 x 8-Bit Multiplies (16-Bit Results) per Clock Cycle
    • Non-Aligned Load-Store Architecture
    • 64 32-Bit General-Purpose Registers
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
  • Instruction Set Features
    • Byte-Addressable (8-/16-/32-/64-Bit Data)
    • 8-Bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • VelociTI.2™ Increased Orthogonality
  • Viterbi Decoder Coprocessor (VCP) [C6416]
    • Supports Over 600 7.95-Kbps AMR
    • Programmable Code Parameters
  • Turbo Decoder Coprocessor (TCP) [C6416]
    • Supports up to 7 2-Mbps or 43 384-Kbps 3GPP (6 Iterations)
    • Programmable Turbo Code and Decoding Parameters
  • L1/L2 Memory Architecture
    • 128K-Bit (16K-Byte) L1P Program Cache (Direct Mapped)
    • 128K-Bit (16K-Byte) L1D Data Cache (2-Way Set-Associative)
    • 8M-Bit (1024K-Byte) L2 Unified Mapped RAM/Cache (Flexible Allocation)
  • Two External Memory Interfaces (EMIFs)
    • One 64-Bit (EMIFA), One 16-Bit (EMIFB)
    • Glueless Interface to Asynchronous Memories (SRAM and EPROM) and Synchronous Memories (SDRAM, SBSRAM, ZBT SRAM, and FIFO)
    • 1280M-Byte Total Addressable External Memory Space
  • Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent Channels)
  • Host-Port Interface (HPI)
    • User-Configurable Bus Width (32-/16-Bit)
  • 32-Bit/33-MHz, 3.3-V PCI Master/Slave Interface Conforms to PCI Specification 2.2 [C6415/C6416 ]
    • Three PCI Bus Address Registers:
         Prefetchable Memory
         Non-Prefetchable Memory I/O
    • Four-Wire Serial EEPROM Interface
    • PCI Interrupt Request Under DSP Program Control
    • DSP Interrupt Via PCI I/O Cycle
  • Three Multichannel Buffered Serial Ports
    • Direct Interface to T1/E1, MVIP, SCSA Framers
    • Up to 256 Channels Each
    • ST-Bus-Switching-, AC97-Compatible
    • Serial Peripheral Interface (SPI) Compatible (Motorola™)
  • Three 32-Bit General-Purpose Timers
  • Universal Test and Operations PHY Interface for ATM (UTOPIA) [C6415/C6416]
    • UTOPIA Level 2 Slave ATM Controller
    • 8-Bit Transmit and Receive Operations up to 50 MHz per Direction
    • User-Defined Cell Format up to 64 Bytes
  • Sixteen General-Purpose I/O (GPIO) Pins
  • Flexible PLL Clock Generator
  • IEEE-1149.1 (JTAG) Boundary-Scan-Compatible
  • 532-Pin Ball Grid Array (BGA) Package (GLZ, ZLZ and CLZ Suffixes), 0.8-mm Ball Pitch
  • 0.13-µm/6-Level Cu Metal Process (CMOS)
  • 3.3-V I/Os, 1.2-V/1.25-V Internal (500 MHz)
  • 3.3-V I/Os, 1.4-V Internal (600 and 720 MHz)

C62x, VelociTI.2, VelociTI, and TMS320C64x are trademarks of Texas Instruments.
Motorola is a trademark of Motorola, Inc.
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
TMS320C6000, C64x, and C6000 are trademarks of Texas Instruments.
Windows is a registered trademark of the Microsoft Corporation.
Other trademarks are the property of their respective owners.
Throughout the remainder of this document, the TMS320C6414, TMS320C6415, and TMS320C6416 shall be referred to as TMS320C64x or C64x where generic, and where specific, their individual full device part numbers will be used or abbreviated as C6414, C6415, or C6416.
These C64xdevices have two EMIFs (64-bit EMIFA and 16-bit EMIFB). The prefix "A" in front of a signal name indicates it is an EMIFA signal whereas a prefix "B" in front of a signal name indicates it is an EMIFB signal. Throughout the rest of this document, in generic EMIF areas of discussion, the prefix "A" or "B" may be omitted from the signal name.

The TMS320C64x™ DSPs (including the TMS320C6414, TMS320C6415, and TMS320C6416 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™ developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The C64x™ is a code-compatible member of the C6000™ DSP platform.

With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices.

The C6416 device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 600 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to forty-three 384-Kbps or seven 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller.

The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port (C6415/C6416 only); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415/C6416 only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals.

The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.

The TMS320C64x™ DSPs (including the TMS320C6414, TMS320C6415, and TMS320C6416 devices) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C64x™ (C64x™) device is based on the second-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™ developed by Texas Instruments (TI), making these DSPs an excellent choice for multichannel and multifunction applications. The C64x™ is a code-compatible member of the C6000™ DSP platform.

With performance of up to 5760 million instructions per second (MIPS) at a clock rate of 720 MHz, the C64x devices offer cost-effective solutions to high-performance DSP programming challenges. The C64x DSPs possess the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units include new instructions to accelerate the performance in key applications and extend the parallelism of the VelociTI™ architecture. The C64x can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2880 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 5760 MMACS. The C64x DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000™ DSP platform devices.

The C6416 device has two high-performance embedded coprocessors [Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP)] that significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4 can decode over 600 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating hard decisions or soft decisions. The TCP operating at CPU clock divided-by-2 can decode up to forty-three 384-Kbps or seven 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP/TCP and the CPU are carried out through the EDMA controller.

The C64x uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 8-Mbit memory space that is shared between program and data space. L2 memory can be configured as mapped memory or combinations of cache (up to 256K bytes) and mapped memory. The peripheral set includes three multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port (C6415/C6416 only); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a peripheral component interconnect (PCI) [C6415/C6416 only]; a general-purpose input/output port (GPIO) with 16 GPIO pins; and two glueless external memory interfaces (64-bit EMIFA and 16-bit EMIFB), both of which are capable of interfacing to synchronous and asynchronous memories and peripherals.

The C64x has a complete set of development tools which includes: an advanced C compiler with C64x-specific enhancements, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.

Download

No design support from TI available

This product does not have ongoing design support from TI for new projects, such as new content or software updates. If available, you will find relevant collateral, software and tools in the product folder. You can also search for archived information in the TI E2ETM support forums.

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 67
Type Title Date
* Data sheet TMS320C6414, TMS320C6415, TMS320C6416 Fixed-Point Digital Signal Processors datasheet (Rev. N) 26 May 2005
* Errata TMS320C6414/C6415/C6416 Silicon Errata (Silicon Rev. 1.0,1.01,1.02,1.03,1.1,2.0) (Rev. T) 01 Aug 2007
Application note How to Migrate CCS 3.x Projects to the Latest CCS (Rev. A) 19 May 2021
Technical article Bringing the next evolution of machine learning to the edge 27 Nov 2018
Technical article How quality assurance on the Processor SDK can improve software scalability 22 Aug 2018
Technical article Clove: Low-Power video solutions based on Sitara™ AM57x processors 21 Jul 2016
Technical article TI's new DSP Benchmark Site 08 Feb 2016
User guide Emulation and Trace Headers Technical Reference Manual (Rev. I) 09 Aug 2012
Application note Introduction to TMS320C6000 DSP Optimization 06 Oct 2011
User guide TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (Rev. J) 30 Jul 2010
User guide TMS320C6000 DSP Peripherals Overview Reference Guide (Rev. Q) 02 Jul 2009
Application note Migrating from TMS320C6416/15/14 to TMS320C6416T/15T/14T (Rev. B) 22 Feb 2008
Application note TMS320C6000 EMIF-to-External SDRAM Interface (Rev. E) 04 Sep 2007
User guide TMS320C6000 DSP External Memory Interface (EMIF) Reference Guide (Rev. E) 11 Apr 2007
More literature TMS320C6000 DSP TCP/IP Stack Software (Rev. C) 04 Apr 2007
User guide TMS320C6000 DSP Multichannel Buffered Serial Port (McBSP) Reference Guide (Rev. G) 14 Dec 2006
User guide TMS320C6000 DSP Enhanced Direct Memory Access (EDMA) Controller Reference Guide (Rev. C) 15 Nov 2006
User guide TMS320C64x DSP Two-Level Internal Memory Reference Guide (Rev. C) 28 Feb 2006
User guide TMS320C6000 DSP Host-Post Interface (HPI) Reference Guide (Rev. C) 01 Jan 2006
Application note TMS320C6414 Hardware Designer's Resource Guide (Rev. A) 22 Oct 2005
Application note Migrating from TMS320C64x to TMS320C64x+ (Rev. A) 20 Oct 2005
Application note TMS320C6000 EMIF to USB Interfacing Using Cypress EZ-USB SX2 (Rev. A) 20 May 2005
User guide TMS320C6000 DSP Power-Down Logic and Modes Reference Guide (Rev. C) 01 Mar 2005
User guide TMS320C6000 DSP 32-bit Timer Reference Guide (Rev. B) 25 Jan 2005
Application note Migrating From TMS320C6416/15/14/11 Rev 1.1 to Rev 2.0 19 Oct 2004
Application note Use and Handling of Semiconductor Packages With ENIG Pad Finishes 31 Aug 2004
User guide TMS320C6000 Chip Support Library API Reference Guide (Rev. J) 13 Aug 2004
Application note TMS320C64x Reference Design 12 May 2004
Application note TMS320C6000 Tools: Vector Table and Boot ROM Creation (Rev. D) 26 Apr 2004
Application note TMS320C6000 Board Design: Considerations for Debug (Rev. C) 21 Apr 2004
User guide TMS320C6000 DSP General-Purpose Input/Output (GPIO) Reference Guide (Rev. A) 25 Mar 2004
Application note TMS320C6000 McBSP Initialization (Rev. C) 08 Mar 2004
Application note TMS320C6000 EDMA IO Scheduling and Performance 05 Mar 2004
Application note TMS320C64x DSP Peripheral Component Interconnect (PCI) Performance 31 Oct 2003
Application note TMS320C64x DSP Host Port Interface (HPI) Performance 24 Oct 2003
Application note Tips for Using the EDMA with the Utopia Port 15 Sep 2003
User guide TMS320C6000 DSP Designing for JTAG Emulation Reference Guide 31 Jul 2003
Application note TMS320C6414/5/6 Power Consumption Summary (Rev. C) 30 Jun 2003
User guide TMS320C6000 DSP Cache User's Guide (Rev. A) 05 May 2003
Application note Using IBIS Models for Timing Analysis (Rev. A) 15 Apr 2003
Application note How to Begin Development Today With the TMS320C6414, C6415, and C6416 DSPs (Rev. A) 06 Mar 2003
Application note TMS320C6000 McBSP Interface to an ST-BUS Device (Rev. B) 04 Jun 2002
Application note TMS320C6000 HPI to PCI Interfacing Using the PLX PCI9050 (Rev. C) 17 Apr 2002
Application note TMS320C6000 Board Design for JTAG (Rev. C) 02 Apr 2002
Application note TMS320C6000 EMIF to External Flash Memory (Rev. A) 13 Feb 2002
Application note Cache Usage in High-Performance DSP Applications with the TMS320C64x 13 Dec 2001
Application note Using a TMS320C6000 McBSP for Data Packing (Rev. A) 31 Oct 2001
Application note TMS320C6000 Enhanced DMA: Example Applications (Rev. A) 24 Oct 2001
Application note Interfacing theTMS320C6000 EMIFto a PCI Bus Using the AMCC S5933 PCI Controller (Rev. A) 30 Sep 2001
Application note TMS320C6000 Host Port to MC68360 Interface (Rev. A) 30 Sep 2001
Application note TMS320C6000 EMIF to External Asynchronous SRAM Interface (Rev. A) 31 Aug 2001
Application note TMS320C6000 Host Port to the i80960 Microprocessors Interface (Rev. A) 31 Aug 2001
Application note Using the TMS320C6000 McBSP as a High Speed Communication Port (Rev. A) 31 Aug 2001
Application note TMS320C6000 System Clock Circuit Example (Rev. A) 15 Aug 2001
Application note TMS320C6000 McBSP to Voice Band Audio Processor (VBAP) Interface (Rev. A) 23 Jul 2001
Application note TMS320C6000 McBSP: AC'97 Codec Interface (TLV320AIC27) (Rev. A) 10 Jul 2001
Application note TMS320C6000 McBSP: Interface to SPI ROM (Rev. C) 30 Jun 2001
Application note TMS320C6000 Host Port to MPC860 Interface (Rev. A) 21 Jun 2001
Application note TMS320C6000 McBSP: IOM-2 Interface (Rev. A) 21 May 2001
Application note TMS320C6415/6416: Using PCI EEPROM Interface and McBSP2 in a Single System 01 Mar 2001
User guide TMS320C64x Technical Overview (Rev. B) 30 Jan 2001
Application note Circular Buffering on TMS320C6000 (Rev. A) 12 Sep 2000
Application note TMS320C6000 McBSP as a TDM Highway (Rev. A) 11 Sep 2000
Application note TMS320C6000 u-Law and a-Law Companding with Software or the McBSP 02 Feb 2000
Application note General Guide to Implement Logarithmic and Exponential Operations on Fixed-Point 31 Jan 2000
Application note TMS320C6000 C Compiler: C Implementation of Intrinsics 07 Dec 1999
Application note TMS320C6000 McBSP: I2S Interface 08 Sep 1999

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

TMDSDSK6416 — TMS320C6416 DSP Starter Kit (DSK)

In stock
Limit: 1
Debug probe

TMDSEMU560V2STM-U — XDS560v2 System Trace USB Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Debug probe

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB & Ethernet Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Driver or library

SPRC090 — TMS320C6000 Chip Support Library

The Chip Support Library (CSL) provides an application programming interface (API) used for configuring and controlling the DSP on-chip peripherals for ease of use, compatibility between various C6000 devices and hardware abstraction. This will shorten development time by providing standardization (...)
Driver or library

SPRC122 — C62x/C64x Fast Run-Time Support (RTS) Library

The C62x/64x FastRTS Library is an optimized, floating-point function library for C programmers using either TMS320C62x or TMS320C64x devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed is critical. By replacing the current (...)
Driver or library

SPRC264 — TMS320C5000/6000 Image Library (IMGLIB)

C5000/6000 Image Processing Library (IMGLIB) is an optimized image/video processing function library for C programmers. It includes C-callable general-purpose image/video processing routines that are typically used in computationally intensive real-time applications. With these routines, higher (...)
Driver or library

SPRC265 — TMS320C6000 DSP Library (DSPLIB)

TMS320C6000 Digital Signal Processor Library (DSPLIB) is a platform-optimized DSP function library for C programmers. It includes C-callable, general-purpose signal-processing routines that are typically used in computationally intensive real-time applications. With these routines, higher (...)
Driver or library

TELECOMLIB — Telecom and Media Libraries - FAXLIB, VoLIB and AEC/AER for TMS320C64x+ and TMS320C55x Processors

Voice Library - VoLIB provides components that, together, facilitate the development of the signal processing chain for Voice over IP applications such as infrastructure, enterprise, residential gateways and IP phones. Together with optimized implementations of ITU-T voice codecs, that can be (...)
Software codec

ADT-3P-DSPVOIPCODECS — Adaptive Digital Technologies DSP VOIP, speech and audio codecs

Adaptive Digital is a developer of voice quality enhancement algorithms, and best-in-class acoustic echo cancellation software that work with TI DSPs. Adaptive Digital has extensive experience in the algorithm development, implementation, optimization and configuration tuning. They provide (...)
From: Adaptive Digital Technologies, Inc.
Software codec

COUTH-3P-DSPVOIPCODECS — CouthIT DSP VoIP, speech, and audio codecs

Since 1999, CouthIT has been helping customers transform their ideas into real-time robust software solutions. They license specialized, pre-built, highly optimized software modules in the areas of VoIP and speech and audio codecs, and provide software optimization and customization services for (...)
From: Couth Infotech Pvt. Ltd.
Software codec

VOCAL-3P-DSPVOIPCODECS — Vocal technologies DSP VoIP codecs

With over 25 years of assembly and C code development, VOCAL modular software suite is available for a wide variety of TI DSPs. Products include ATAs, VoIP servers and gateways, HPNA-based IPBXs, video surveillance, voice and video conferencing, voice and data RF devices, RoIP gateways, secure (...)
From: VOCAL Technologies, Ltd.
Simulation model

C6414, C6415, C6416 GLZ IBIS Model Silicon Revision 1.1 and 2.0 (Rev. D)

SPRM039D.ZIP (85 KB) - IBIS Model
Simulation model

C6414, C6415, C6416 GLZ BSDL Model (Silicon Revision 1.1) (Rev. C)

SPRM043C.ZIP (11 KB) - BSDL Model
Simulation model

C6414, C6415, C6416 GLZ BSDL Model (Silicon Revision 2.0)

SPRM138.ZIP (11 KB) - BSDL Model
Design tool

PROCESSORS-3P-SEARCH — Arm-based MPU, arm-based MCU and DSP third-party search tool

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)
Schematic

TMS320C6414/C6415/C6416 Reference Design

SPRC137.ZIP (3442 KB)
Package Pins Download
FCBGA (GLZ) 532 View options
FCBGA (ZLZ) 532 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos