A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
TLV9102 ACTIVE Dual, 16-V, 1.1-MHz, low-power operational amplifier Rail-to-rail I/O, higher GBW (1.1 MHz), faster slew rate (4.5 V/us), lower offset voltage (1.5 mV), lower power (0.12 mA), higher output current (80 mA)

Product details

Number of channels 2 Total supply voltage (+5 V = 5, ยฑ5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ยฑ5 V = 10) (min) (V) 4.4 Rail-to-rail In to V-, Out GBW (typ) (MHz) 0.71 Slew rate (typ) (V/ยตs) 0.55 Vos (offset voltage at 25ยฐC) (max) (mV) 2.5 Iq per channel (typ) (mA) 0.2 Vn at 1 kHz (typ) (nVโˆšHz) 12 Rating Catalog Operating temperature range (ยฐC) -40 to 125 Offset drift (typ) (ยตV/ยฐC) 2 Features High Cload Drive Input bias current (max) (pA) 60 CMRR (typ) (dB) 83 Iout (typ) (A) 0.0022 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.01 Output swing headroom (to positive supply) (typ) (V) -0.06
Number of channels 2 Total supply voltage (+5 V = 5, ยฑ5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ยฑ5 V = 10) (min) (V) 4.4 Rail-to-rail In to V-, Out GBW (typ) (MHz) 0.71 Slew rate (typ) (V/ยตs) 0.55 Vos (offset voltage at 25ยฐC) (max) (mV) 2.5 Iq per channel (typ) (mA) 0.2 Vn at 1 kHz (typ) (nVโˆšHz) 12 Rating Catalog Operating temperature range (ยฐC) -40 to 125 Offset drift (typ) (ยตV/ยฐC) 2 Features High Cload Drive Input bias current (max) (pA) 60 CMRR (typ) (dB) 83 Iout (typ) (A) 0.0022 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.01 Output swing headroom (to positive supply) (typ) (V) -0.06
PDIP (P) 8 92.5083 mmยฒ 9.81 x 9.43 SOIC (D) 8 29.4 mmยฒ 4.9 x 6 TSSOP (PW) 8 19.2 mmยฒ 3 x 6.4
  • Output Swing includes Both Supply Rails
  • Low Noise...12 nV/Hz\ Typ at f = 1 kHz
  • Low Input Bias Current...1 pA Typ
  • Fully Specified for Both Single-Supply and Split-Supply Operation
  • Low Power...500 uA Max
  • Common-Mode Input Voltage Range Includes Negative Rail
  • Low Input Offset Voltage
  • 950 uV Max at TA = 25ยฐC (TLC2262A)
  • Macromodel Included
  • Performance Upgrade for the TS27M2/M4 and TLC27M2/M4
  • Available in Q-Temp Automotive
    HighRel Automotive Applications
    Configuration Control/Print Support
    Qualification to Automotive Standards

Advanced LinCMOS is a trademark of Texas Instruments.

  • Output Swing includes Both Supply Rails
  • Low Noise...12 nV/Hz\ Typ at f = 1 kHz
  • Low Input Bias Current...1 pA Typ
  • Fully Specified for Both Single-Supply and Split-Supply Operation
  • Low Power...500 uA Max
  • Common-Mode Input Voltage Range Includes Negative Rail
  • Low Input Offset Voltage
  • 950 uV Max at TA = 25ยฐC (TLC2262A)
  • Macromodel Included
  • Performance Upgrade for the TS27M2/M4 and TLC27M2/M4
  • Available in Q-Temp Automotive
    HighRel Automotive Applications
    Configuration Control/Print Support
    Qualification to Automotive Standards

Advanced LinCMOS is a trademark of Texas Instruments.

The TLC2262 and TLC2264 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC226x family offers a compromise between the micropower TLC225x and the ac performance of the TLC227x. It has low supply current for battery-powered applications, while still having adequate ac performance for applications that demand it. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Figure 1 depicts the low level of noise voltage for this CMOS amplifier, which has only 200 uA (typ) of supply current per amplifier.

The TLC226x, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC226xA family is available and has a maximum input offset voltage of 950 uV. This family is fully characterized at 5 V and ±5 V.

The TLC2262/4 also makes great upgrades to the TLC27M2/L4 or TS27M2/L4 in standard designs. They offer increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442. If your design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.

The TLC2262 and TLC2264 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC226x family offers a compromise between the micropower TLC225x and the ac performance of the TLC227x. It has low supply current for battery-powered applications, while still having adequate ac performance for applications that demand it. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Figure 1 depicts the low level of noise voltage for this CMOS amplifier, which has only 200 uA (typ) of supply current per amplifier.

The TLC226x, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC226xA family is available and has a maximum input offset voltage of 950 uV. This family is fully characterized at 5 V and ±5 V.

The TLC2262/4 also makes great upgrades to the TLC27M2/L4 or TS27M2/L4 in standard designs. They offer increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442. If your design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 4
Type Title Date
* Data sheet Advanced LinCMOS Rail-to-Rail Op Amps datasheet (Rev. D) 16 Mar 2001
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Application note TLC2262 and TLC2264 EMI Immunity Performance 19 Aug 2013
Application note Use of Rail-to-Rail Operational Amplifiers (Rev. A) 22 Dec 1999

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM โ€” DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP adapter evaluation module (DIP-ADAPTER-EVM), which provides a fast, easy and inexpensive way to interface with small surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them (...)

User guide: PDF
Not available on TI.com
Evaluation board

DUAL-DIYAMP-EVM โ€” Dual-channel universal do-it-yourself (DIY) amplifier circuit evaluation module

The DUAL-DIYAMP-EVM is an evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling quick evaluation of design concepts and verify simulations. It is designed specifically for dual package op amps in the (...)

User guide: PDF
Not available on TI.com
Simulation model

TLC2262, TLC2262A PSpice Model

SLOJ078.ZIP (3 KB) - PSpice Model
Calculation tool

ANALOG-ENGINEER-CALC โ€” Analog engineer's calculator

The analog engineerโ€™s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 โ€” Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 โ€” Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 โ€” High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI โ€” PSpiceยฎ for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI โ€” SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
PDIP (P) 8 View options
SOIC (D) 8 View options
TSSOP (PW) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2Eโ„ข forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. โ€‹โ€‹โ€‹โ€‹โ€‹โ€‹โ€‹โ€‹โ€‹โ€‹โ€‹โ€‹โ€‹โ€‹

Videos