產品詳細資料

DSP type 1 C64x DSP (max) (MHz) 1000 CPU 32-/64-bit Operating system DSP/BIOS Ethernet MAC 10/100/1000 Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 100
DSP type 1 C64x DSP (max) (MHz) 1000 CPU 32-/64-bit Operating system DSP/BIOS Ethernet MAC 10/100/1000 Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 100
FCBGA (GMH) 688 529 mm² 23 x 23
  • High-Performance Fixed-Point Digital Signal
    Processor (DSP) — SM320C6457-HIREL
    • 1.18-ns, 1-ns, and 0.83-ns Instruction Cycle
      Time
    • 850-MHz and 1-GHz Clock Rate
    • Eight 32-Bit Instructions/Cycle
    • 8000 and 9600 MIPS/MMACS (16 Bit)
    • Extended Case Temperature
      • –55°C to 100ºC (1 GHz)
  • TMS320C64x+™ DSP Core
    • Dedicated SPLOOP Instruction
    • Compact Instructions (16 Bit)
    • Instruction Set Enhancements
    • Exception Handling
  • TMS320C64x+ Megamodule L1/L2 Memory
    Architecture:
    • 256K-Bit (32Kb) L1P Program Cache [Direct
      Mapped]
    • 256K-Bit (32Kb) L1D Data Cache [2-Way Set-
      Associative]
    • 16M-Bit (2048Kb) L2 Unified Mapped
      Ram/Cache [Flexible Allocation]
      • Configurable up to 1MB of L2 Cache
    • 512K-Bit (64Kb) L3 ROM
    • Time Stamp Counter
  • Enhanced VCP2
    • Supports Over 694 7.95-Kbps AMR
    • Programmable Code Parameters
  • Two Enhanced Turbo Decoder Coprocessors
    (TCP2_A and TCP2_B)
    • Each TCP2 Supports up to Eight 2-Mbps 3GPP
      (6 Iterations)
    • Programmable Turbo Code and Decoding
      Parameters
  • Endianess: Little Endian, Big Endian
  • 64-Bit External Memory Interface (EMIFA)
    • Glueless Interface to Asynchronous Memories
      (SRAM, Flash, and EEPROM) and Synchronous
      Memories (SBSRAM, ZBT SRAM)
    • Supports Interface to Standard Sync Devices
      and Custom Logic (FPGA, CPLD, ASICs, and
      So Forth)
    • 32M-Byte Total Addressable External Memory
      Space
  • 32-Bit DDR2 Memory Controller (DDR2-667
    SDRAM)
  • Four 1× Serial RapidIO® Links (or One 4×), v1.3
    Compliant
    • 1.25-, 2.5-, 3.125-Gbps Link Rates
    • Message Passing, DirectIO Support, Error
      Management Extensions, Congestion Control
    • IEEE 1149.6 Compliant I/Os
  • EDMA3 Controller (64 Independent Channels)
  • 32-/16-Bit Host-Port Interface (HPI)
  • Two 1.8-V McBSPs
  • 10/100/1000 Mb/s Ethernet MAC (EMAC)
    • IEEE 802.3 Compliant
    • Supports SGMII, v1.8 Compliant
    • 8 Independent Transmit (TX) and 8 Independent
      Receive (RX) Channels
  • Two 64-Bit General-Purpose Timers
    • Configurable as Four 32-Bit Timers
    • Configurable in a Watchdog Timer Mode
  • UTOPIA
    • UTOPIA Level 2 Slave ATM Controller
    • 8-Bit Transmit and Receive Operations up to
      50 MHz per Direction
    • User-Defined Cell Format up to 64 Bytes
  • One 1.8-V Inter-Integrated Circuit (I2C) Bus
  • 16 General-Purpose I/O (GPIO) Pins
  • System PLL and PLL Controller
  • DDR PLL, Dedicated to DDR2 Memory Controller
  • Advanced Event Triggering (AET) Compatible
  • Trace-Enabled Device
  • Supports IP Security
  • IEEE-1149.1 and IEEE-1149.6 (JTAG™)
    Boundary-Scan-Compatible
  • 688-Pin Ball Grid Array (BGA) Package (GMH
    Suffix), 0.8-mm Ball Pitch
  • 0.065-µm/7-Level Cu Metal Process (CMOS)
  • 3.3-V, 1.8-V, 1.1-V I/Os, 1.1-V and 1.2-V Internal
  • High-Performance Fixed-Point Digital Signal
    Processor (DSP) — SM320C6457-HIREL
    • 1.18-ns, 1-ns, and 0.83-ns Instruction Cycle
      Time
    • 850-MHz and 1-GHz Clock Rate
    • Eight 32-Bit Instructions/Cycle
    • 8000 and 9600 MIPS/MMACS (16 Bit)
    • Extended Case Temperature
      • –55°C to 100ºC (1 GHz)
  • TMS320C64x+™ DSP Core
    • Dedicated SPLOOP Instruction
    • Compact Instructions (16 Bit)
    • Instruction Set Enhancements
    • Exception Handling
  • TMS320C64x+ Megamodule L1/L2 Memory
    Architecture:
    • 256K-Bit (32Kb) L1P Program Cache [Direct
      Mapped]
    • 256K-Bit (32Kb) L1D Data Cache [2-Way Set-
      Associative]
    • 16M-Bit (2048Kb) L2 Unified Mapped
      Ram/Cache [Flexible Allocation]
      • Configurable up to 1MB of L2 Cache
    • 512K-Bit (64Kb) L3 ROM
    • Time Stamp Counter
  • Enhanced VCP2
    • Supports Over 694 7.95-Kbps AMR
    • Programmable Code Parameters
  • Two Enhanced Turbo Decoder Coprocessors
    (TCP2_A and TCP2_B)
    • Each TCP2 Supports up to Eight 2-Mbps 3GPP
      (6 Iterations)
    • Programmable Turbo Code and Decoding
      Parameters
  • Endianess: Little Endian, Big Endian
  • 64-Bit External Memory Interface (EMIFA)
    • Glueless Interface to Asynchronous Memories
      (SRAM, Flash, and EEPROM) and Synchronous
      Memories (SBSRAM, ZBT SRAM)
    • Supports Interface to Standard Sync Devices
      and Custom Logic (FPGA, CPLD, ASICs, and
      So Forth)
    • 32M-Byte Total Addressable External Memory
      Space
  • 32-Bit DDR2 Memory Controller (DDR2-667
    SDRAM)
  • Four 1× Serial RapidIO® Links (or One 4×), v1.3
    Compliant
    • 1.25-, 2.5-, 3.125-Gbps Link Rates
    • Message Passing, DirectIO Support, Error
      Management Extensions, Congestion Control
    • IEEE 1149.6 Compliant I/Os
  • EDMA3 Controller (64 Independent Channels)
  • 32-/16-Bit Host-Port Interface (HPI)
  • Two 1.8-V McBSPs
  • 10/100/1000 Mb/s Ethernet MAC (EMAC)
    • IEEE 802.3 Compliant
    • Supports SGMII, v1.8 Compliant
    • 8 Independent Transmit (TX) and 8 Independent
      Receive (RX) Channels
  • Two 64-Bit General-Purpose Timers
    • Configurable as Four 32-Bit Timers
    • Configurable in a Watchdog Timer Mode
  • UTOPIA
    • UTOPIA Level 2 Slave ATM Controller
    • 8-Bit Transmit and Receive Operations up to
      50 MHz per Direction
    • User-Defined Cell Format up to 64 Bytes
  • One 1.8-V Inter-Integrated Circuit (I2C) Bus
  • 16 General-Purpose I/O (GPIO) Pins
  • System PLL and PLL Controller
  • DDR PLL, Dedicated to DDR2 Memory Controller
  • Advanced Event Triggering (AET) Compatible
  • Trace-Enabled Device
  • Supports IP Security
  • IEEE-1149.1 and IEEE-1149.6 (JTAG™)
    Boundary-Scan-Compatible
  • 688-Pin Ball Grid Array (BGA) Package (GMH
    Suffix), 0.8-mm Ball Pitch
  • 0.065-µm/7-Level Cu Metal Process (CMOS)
  • 3.3-V, 1.8-V, 1.1-V I/Os, 1.1-V and 1.2-V Internal

The TMS320C64x+™ DSPs (including the SM320C6457-HIREL device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The SM320C6457-HIREL device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform.

Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the SM320C6457-HIREL device offers cost-effective solutions to high-performance DSP programming challenges. The SM320C6457-HIREL DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors.

The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle.

The SM320C6457-HIREL device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging.

The SM320C6457-HIREL DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the SM320C6457-HIREL device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp.

The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the SM320C6457-HIREL DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface.

The SM320C6457-HIREL device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller.

The SM320C6457-HIREL device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.

The TMS320C64x+™ DSPs (including the SM320C6457-HIREL device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The SM320C6457-HIREL device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform.

Based on 65-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the SM320C6457-HIREL device offers cost-effective solutions to high-performance DSP programming challenges. The SM320C6457-HIREL DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors.

The C64x+ DSP core employs eight functional units, two register files, and two data paths. Like the earlier C6000 devices, two of these eight functional units are multipliers or .M units. Each C64x+ .M unit doubles the multiply throughput versus the C64x core by performing four 16-bit × 16-bit multiply-accumulates (MACs) every clock cycle. Thus, eight 16-bit × 16-bit MACs can be executed every cycle on the C64x+ core. At a 1.2-GHz clock rate, this means 9600 16-bit MMACs can occur every second. Moreover, each multiplier on the C64x+ core can compute one 32-bit × 32-bit MAC or four 8-bit × 8-bit MACs every clock cycle.

The SM320C6457-HIREL device includes Serial RapidIO®. This high-bandwidth peripheral dramatically improves system performance and reduces system cost for applications that include multiple DSPs on a board, such as video and telecom infrastructures and medical/imaging.

The SM320C6457-HIREL DSP integrates a large amount of on-chip memory organized as a two-level memory system. The level-1 (L1) program and data memories on the SM320C6457-HIREL device are 32KB each. This memory can be configured as mapped RAM, cache, or some combination of the two. When configured as cache, L1 program (L1P) is a direct mapped cache whereas L1 data (L1D) is a two-way set associative cache. The level 2 (L2) memory is shared between program and data space and is 2048KB in size. L2 memory can also be configured as mapped RAM, cache, or some combination of the two. L2 is configurable up to 1MB of cache. The C64x+ Megamodule also has a 32-bit peripheral configuration (CFG) port, an internal DMA (IDMA) controller, a system component with reset/boot control, interrupt/exception control, a power-down control, and a free-running 32-bit timer for time stamp.

The peripheral set includes: an inter-integrated circuit bus module (I2C); two multichannel buffered serial ports (McBSPs); an 8-bit Universal Test and Operations PHY Interface for Asynchronous Transfer Mode (ATM) Slave [UTOPIA Slave] port; two 64-bit general-purpose timers (also configurable as four 32-bit timers); a user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output port (GPIO) with programmable interrupt/event generation modes; an 10/100/1000 Ethernet media access controller (EMAC), which provides an efficient interface between the SM320C6457-HIREL DSP core processor and the network; a management data input/output (MDIO) module (also part of the EMAC) that continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system; a glueless external memory interface (64-bit EMIFA), which is capable of interfacing to synchronous and asynchronous peripherals; and a 32-bit DDR2 SDRAM interface.

The SM320C6457-HIREL device has three high-performance embedded coprocessors [one enhanced Viterbi Decoder Coprocessor (VCP2) and two enhanced Turbo Decoder Coprocessors (TCP2_A and TCP2_B)] that significantly speed up channel-decoding operations on-chip. The VCP2 operating at CPU clock ÷ 3 can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and flexible polynomials, while generating hard decisions or soft decisions. Each TCP2 operating at CPU clock ÷ 3 can decode up to fifty 384-Kbps or eight 2-Mbps turbo encoded channels (assuming 6 iterations). The TCP2 implements the max*log-map algorithm and is designed to support all polynomials and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping criteria are also programmable. Communications between the VCP2/TCP2s and the CPU are carried out through the EDMA3 controller.

The SM320C6457-HIREL device has a complete set of development tools, which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 2
類型 標題 日期
* Data sheet SM320C6457-HIREL Communications Infrastructure Digital Signal Processor datasheet PDF | HTML 2016年 7月 8日
Application note Introduction to TMS320C6000 DSP Optimization 2011年 10月 6日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

IDE、配置、編譯器或偵錯程式

CCSTUDIO Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) for TI's microcontrollers and processors. It comprises a suite of tools used to develop and debug embedded applications.  Code Composer Studio is available for download across Windows®, Linux® and macOS® (...)

支援產品和硬體

支援產品和硬體

此設計資源支援此類別中多數產品。

檢查產品詳細資料頁面以確認支援。

啟動 下載選項
設計工具

PROCESSORS-3P-SEARCH — Arm 架構 MPU、arm 架構 MCU 和 DSP 第三方搜尋工具

TI 已與公司合作,提供各種使用 TI 處理器的軟體、工具和 SOM 以加速生產。下載此搜尋工具,以快速瀏覽我們的第三方解決方案,並找出符合您需求的正確協力廠商。此處列出的軟體、工具和模組,皆由獨立第三方而非由德州儀器生產及管理。

搜尋工具會依產品類型分類,如下所示:

  • 工具包括 IDE/編譯器、偵錯和追蹤、模擬和建模軟體及快閃程式設計師。
  • OS 包含 TI 處理器支援的作業系統。
  • 應用軟體意指特定應用程式軟體,包括在 TI 處理器上執行的中介軟體和程式庫。
  • SOM 意指系統模組解決方案
封裝 引腳 下載
FCBGA (GMH) 688 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片