SLOS930B November   2015  – November 2019 THS4541-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Single to Differential Gain of 2, 2-VPP Output
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: (Vs+) – Vs– = 5 V
    6. 7.6 Electrical Characteristics: (Vs+) – Vs– = 3 V
    7. 7.7 Typical Characteristics
      1. 7.7.1 5-V Single Supply
      2. 7.7.2 3-V Single Supply
      3. 7.7.3 3-V to 5-V Supply Range
  8. Parameter Measurement Information
    1. 8.1 Example Characterization Circuits
    2. 8.2 Frequency-Response Shape Factors
    3. 8.3 I/O Headroom Considerations
    4. 8.4 Output DC Error and Drift Calculations and the Effect of Resistor Imbalances
    5. 8.5 Noise Analysis
    6. 8.6 Factors Influencing Harmonic Distortion
    7. 8.7 Driving Capacitive Loads
    8. 8.8 Thermal Analysis
  9. Detailed Description
    1. 9.1 Overview
      1. 9.1.1 Terminology and Application Assumptions
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Differential I/O
      2. 9.3.2 Power-Down Control Pin (PD)
        1. 9.3.2.1 Operating the Power Shutdown Feature
      3. 9.3.3 Input Overdrive Operation
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operation from Single-Ended Sources to Differential Outputs
        1. 9.4.1.1 AC-Coupled Signal Path Considerations for Single-Ended Input to Differential Output Conversion
        2. 9.4.1.2 DC-Coupled Input Signal Path Considerations for Single-Ended to Differential Conversion
        3. 9.4.1.3 Resistor Design Equations for the Single-Ended to Differential Configuration of the FDA
        4. 9.4.1.4 Input Impedance for the Single-Ended to Differential FDA Configuration
      2. 9.4.2 Differential-Input to Differential-Output Operation
        1. 9.4.2.1 AC-Coupled, Differential-Input to Differential-Output Design Issues
        2. 9.4.2.2 DC-Coupled, Differential-Input to Differential-Output Design Issues
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Designing Attenuators
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Interfacing to High-Performance ADCs
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Development Support
        1. 13.1.1.1 TINA Simulation Model Features
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Support Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Analysis

The relatively low internal quiescent power dissipation for the THS4541-Q1, combined with the excellent thermal impedance of the 16-pin VQFN (RGT) package, limits the possibility of excessively-high, internal-junction temperatures.

To estimate the internal junction temperature (TJ), an estimate of the maximum internal power dissipation (PD) is first required. There are two pieces to the internal power dissipation: quiescent current power and the power used in the output stage to deliver load current. To simplify the latter, the worst-case, output-stage power is driving a DC differential voltage across a load using half the total supply voltage. As an example:

  1. Assume a worst-case, 5% high 5-V supply. This 5.25-V supply with a maximum ICC of 11 mA gives a quiescent power term = 58 mW.
  2. Assume a 100-Ω differential load with a static 2.5-V differential voltage established across it. This 25 mA of DC load current generates a maximum output stage power of (5.25 V – 2.5 V) × 25 mA = 69 mW.
  3. From this total worst-case internal PD = 127 mW, multiply times the 52°C/W thermal impedance to get a 7°C rise from ambient.

Even for this extreme condition and the maximum rated ambient temperature of 125°C, the junction temperature is a maximum 132°C (less than the rated absolute maximum of 150°C). Follow this same calculation sequence for the exact application and package selected to predict the maximum TJ.