SLLSFS9A September   2023  – December 2023 ISOM8110

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Selection
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Thermal Information
    4. 7.4 Insulation Specifications
    5. 7.5 Safety-Related Certifications
    6. 7.6 Safety Limiting Values
    7. 7.7 Electrical Characteristics
    8. 7.8 Switching Characteristics
    9. 7.9 Typical Characteristics
  9. Parameter Measurement Information
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
    4. 9.4 Device Functional Modes
  11. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Typical Application
        1. 10.1.1.1 Design Requirements
        2. 10.1.1.2 Detailed Design Procedure
        3. 10.1.1.3 Application Curves
    2. 10.2 Power Supply Recommendations
    3. 10.3 Layout
      1. 10.3.1 Layout Guidelines
      2. 10.3.2 Layout Example
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Safety Limiting Values

Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SO-4 PACKAGE (DFG)
IS Safety limiting input current RθJA= 288.8℃/W, V= 1.4 V, T= 150℃, T= 25℃ 300 mA
RθJA=288.8℃/W, VCEO = 40 V, T= 150℃, T= 25℃ 10.5 mA
RθJA= 288.8℃/W, VCEO = 24 V, T=150℃, T= 25℃ 17.5 mA
RθJA= 288.8℃/W, VCEO = 15 V, T= 150℃, T= 25℃ 28 mA
PS Safety limiting total power RθJA= 288.8℃/W, T= 150℃, T= 25℃ 420 mW
TS Maximum safety temperature 135
The IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be exceeded. These limits vary with the ambient temperature, TA

The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter:
TJ = TA + RθJA × P, where P is the power dissipated in the device.
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.
PS = IS × VI, where VI is the maximum input voltage.