SNVSC11 May   2022 LM25143-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1. 7.1 Wettable Flanks
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Switching Characteristics
    7. 8.7 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Input Voltage Range (VIN)
      2. 9.3.2  High-Voltage Bias Supply Regulator (VCC, VCCX, VDDA)
      3. 9.3.3  Enable (EN1, EN2)
      4. 9.3.4  Power-Good Monitor (PG1, PG2)
      5. 9.3.5  Switching Frequency (RT)
      6. 9.3.6  Clock Synchronization (DEMB)
      7. 9.3.7  Synchronization Out (SYNCOUT)
      8. 9.3.8  Spread Spectrum Frequency Modulation (DITH)
      9. 9.3.9  Configurable Soft Start (SS1, SS2)
      10. 9.3.10 Output Voltage Setpoint (FB1, FB2)
      11. 9.3.11 Minimum Controllable On Time
      12. 9.3.12 Error Amplifier and PWM Comparator (FB1, FB2, COMP1, COMP2)
      13. 9.3.13 Slope Compensation
      14. 9.3.14 Inductor Current Sense (CS1, VOUT1, CS2, VOUT2)
        1. 9.3.14.1 Shunt Current Sensing
        2. 9.3.14.2 Inductor DCR Current Sensing
      15. 9.3.15 Hiccup Mode Current Limiting (RES)
      16. 9.3.16 High-Side and Low-Side Gate Drivers (HO1, HO2, LO1, LO2, HOL1, HOL2, LOL1, and LOL2)
      17. 9.3.17 Output Configurations (MODE, FB2)
        1. 9.3.17.1 Independent Dual-Output Operation
        2. 9.3.17.2 Single-Output Interleaved Operation
        3. 9.3.17.3 Single-Output Multiphase Operation
    4. 9.4 Device Functional Modes
      1. 9.4.1 Standby Modes
      2. 9.4.2 Diode Emulation Mode
      3. 9.4.3 Thermal Shutdown
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Power Train Components
        1. 10.1.1.1 Buck Inductor
        2. 10.1.1.2 Output Capacitors
        3. 10.1.1.3 Input Capacitors
        4. 10.1.1.4 Power MOSFETs
        5. 10.1.1.5 EMI Filter
      2. 10.1.2 Error Amplifier and Compensation
    2. 10.2 Typical Applications
      1. 10.2.1 Design 1 – 5-V and 3.3-V Dual-Output Buck Regulator for Automotive Applications
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 10.2.1.2.2 Custom Design With Excel Quickstart Tool
          3. 10.2.1.2.3 Inductor Calculation
          4. 10.2.1.2.4 Current-Sense Resistance
          5. 10.2.1.2.5 Output Capacitors
          6. 10.2.1.2.6 Input Capacitors
          7. 10.2.1.2.7 Compensation Components
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Design 2 – Two-Phase, 15-A, 2.1-MHz Single-Output Buck Regulator for Automotive ADAS Applications
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
      3. 10.2.3 Design 3 – Two-Phase, 50-A, 300-kHz Single-Output Buck Regulator for High-Voltage Automotive Battery Applications
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
        3. 10.2.3.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Power Stage Layout
      2. 12.1.2 Gate-Drive Layout
      3. 12.1.3 PWM Controller Layout
      4. 12.1.4 Thermal Design and Layout
      5. 12.1.5 Ground Plane Design
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
      2. 13.1.2 Development Support
        1. 13.1.2.1 Custom Design With WEBENCH® Tools
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
        1. 13.2.1.1 PCB Layout Resources
        2. 13.2.1.2 Thermal Design Resources
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Support Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Input Capacitors

A power supply input typically has a relatively high source impedance at the switching frequency. Good-quality input capacitors are necessary to limit the input ripple voltage. As mentioned earlier, dual-channel interleaved operation significantly reduces the input ripple amplitude. In general, the ripple current splits between the input capacitors based on the relative impedance of the capacitors at the switching frequency.

  1. Select the input capacitors with sufficient voltage and RMS ripple current ratings.
  2. Worst case input ripple for a two-channel buck regulator typically corresponds to when one channel operates at full load and the other channel is disabled or operates at no load. Use Equation 41 to calculate the input capacitor RMS ripple current assuming a worst-case duty-cycle operating point of 50%.
    Equation 41. GUID-A1155949-043F-4031-9497-6DC95C696D0B-low.gif
  3. Use Equation 42 to find the required input capacitance.
    Equation 42. GUID-918BA309-4856-4E78-9009-22778666B0D8-low.gif

    where

    • ΔVIN is the input peak-to-peak ripple voltage specification.
    • RESR is the input capacitor ESR.
  4. Recognizing the voltage coefficient of ceramic capacitors, select two 10-µF, 50-V, X7R, 1210 ceramic input capacitors for each channel. Place these capacitors adjacent to the relevant power MOSFETs.
  5. Use four 10-nF, 50-V, X7R, 0603 ceramic capacitors near each high-side MOSFET to supply the high di/dt current during MOSFET switching transitions. Such capacitors offer high self-resonant frequency (SRF) and low effective impedance above 100 MHz. The result is lower power loop parasitic inductance, thus minimizing switch-node voltage overshoot and ringing for lower EMI signature. Refer to Figure 12-2 in Section 12.1 for more detail.