SLLSFQ7 November   2023 MCF8329A

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Comm
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information 1pkg
    5. 6.5 Electrical Characteristics
    6. 6.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Three Phase BLDC Gate Drivers
      2. 7.3.2  Gate Drive Architecture
        1. 7.3.2.1 Dead time and Cross Conduction Prevention
      3. 7.3.3  AVDD Linear Voltage Regulator
      4. 7.3.4  DVDD Voltage Regulator
        1. 7.3.4.1 AVDD Powered VREG
        2. 7.3.4.2 External Supply for VREG
        3. 7.3.4.3 External MOSFET for VREG Supply
      5. 7.3.5  Low-Side Current Sense Amplifier
      6. 7.3.6  Device Interface Modes
        1. 7.3.6.1 Interface - Control and Monitoring
        2. 7.3.6.2 I2C Interface
      7. 7.3.7  Motor Control Input Options
        1. 7.3.7.1 Analog-Mode Motor Control
        2. 7.3.7.2 PWM-Mode Motor Control
        3. 7.3.7.3 Frequency-Mode Motor Control
        4. 7.3.7.4 I2C based Motor Control
        5. 7.3.7.5 Input Control Reference Profiles
          1. 7.3.7.5.1 Linear Control Profiles
          2. 7.3.7.5.2 Staircase Control Profiles
          3. 7.3.7.5.3 Forward-Reverse Profiles
        6. 7.3.7.6 Control Input Transfer Function without Profiler
      8. 7.3.8  Bootstrap Capacitor Initial Charging
      9. 7.3.9  Starting the Motor Under Different Initial Conditions
        1. 7.3.9.1 Case 1 – Motor is Stationary
        2. 7.3.9.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 7.3.9.3 Case 3 – Motor is Spinning in the Reverse Direction
      10. 7.3.10 Motor Start Sequence (MSS)
        1. 7.3.10.1 Initial Speed Detect (ISD)
        2. 7.3.10.2 Motor Resynchronization
        3. 7.3.10.3 Reverse Drive
          1. 7.3.10.3.1 Reverse Drive Tuning
        4. 7.3.10.4 Motor Start-up
          1. 7.3.10.4.1 Align
          2. 7.3.10.4.2 Double Align
          3. 7.3.10.4.3 Initial Position Detection (IPD)
            1. 7.3.10.4.3.1 IPD Operation
            2. 7.3.10.4.3.2 IPD Release
            3. 7.3.10.4.3.3 IPD Advance Angle
          4. 7.3.10.4.4 Slow First Cycle Startup
          5. 7.3.10.4.5 Open loop
          6. 7.3.10.4.6 Transition from Open to Closed Loop
      11. 7.3.11 Closed Loop Operation
        1. 7.3.11.1 Closed loop accelerate
        2. 7.3.11.2 Speed PI Control
        3. 7.3.11.3 Current PI Control
        4. 7.3.11.4 Power Loop
        5. 7.3.11.5 Modulation Index Control
      12. 7.3.12 Maximum Torque Per Ampere (MTPA) Control
      13. 7.3.13 Flux Weakening Control
      14. 7.3.14 Motor Parameters
        1. 7.3.14.1 Motor Resistance
        2. 7.3.14.2 Motor Inductance
        3. 7.3.14.3 Motor Back-EMF constant
      15. 7.3.15 Motor Parameter Extraction Tool (MPET)
      16. 7.3.16 Anti-Voltage Surge (AVS)
      17. 7.3.17 Output PWM Switching Frequency
      18. 7.3.18 Active Braking
      19. 7.3.19 Dead Time Compensation
      20. 7.3.20 Voltage Sense Scaling
      21. 7.3.21 Motor Stop Options
        1. 7.3.21.1 Coast (Hi-Z) Mode
        2. 7.3.21.2 Recirculation Mode
        3. 7.3.21.3 Low-Side Braking
        4. 7.3.21.4 Active Spin-Down
      22. 7.3.22 FG Configuration
        1. 7.3.22.1 FG Output Frequency
        2. 7.3.22.2 FG in Open-Loop
        3. 7.3.22.3 FG During Motor Stop
        4. 7.3.22.4 FG Behaviour During Fault
      23. 7.3.23 DC Bus Current Limit
      24. 7.3.24 Protections
        1. 7.3.24.1  PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 7.3.24.2  AVDD Power on Reset (AVDD_POR)
        3. 7.3.24.3  GVDD Undervoltage Lockout (GVDD_UV)
        4. 7.3.24.4  BST Undervoltage Lockout (BST_UV)
        5. 7.3.24.5  MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 7.3.24.6  VSENSE Overcurrent Protection (SEN_OCP)
        7. 7.3.24.7  Thermal Shutdown (OTSD)
        8. 7.3.24.8  Hardware Lock Detection Current Limit (HW_LOCK_ILIMIT)
          1. 7.3.24.8.1 HW_LOCK_ILIMIT Latched Shutdown (HW_LOCK_ILIMIT_MODE = 00xxb)
          2. 7.3.24.8.2 HW_LOCK_ILIMIT Automatic recovery (HW_LOCK_ILIMIT_MODE = 01xxb)
          3. 7.3.24.8.3 HW_LOCK_ILIMIT Report Only (HW_LOCK_ILIMIT_MODE = 1000b)
          4. 7.3.24.8.4 HW_LOCK_ILIMIT Disabled (HW_LOCK_ILIMIT_MODE= 1001b to 1111b)
        9. 7.3.24.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 7.3.24.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xxb)
          2. 7.3.24.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 01xxb)
          3. 7.3.24.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 1000b)
          4. 7.3.24.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 1xx1b)
        10. 7.3.24.10 Motor Lock (MTR_LCK)
          1. 7.3.24.10.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)
          2. 7.3.24.10.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)
          3. 7.3.24.10.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)
          4. 7.3.24.10.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)
        11. 7.3.24.11 Motor Lock Detection
          1. 7.3.24.11.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 7.3.24.11.2 Lock 2: Abnormal BEMF (ABN_BEMF)
          3. 7.3.24.11.3 Lock3: No-Motor Fault (NO_MTR)
        12. 7.3.24.12 MPET Faults
        13. 7.3.24.13 IPD Faults
    4. 7.4 Device Functional Modes
      1. 7.4.1 Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Standby Mode
        3. 7.4.1.3 Fault Reset (CLR_FLT)
    5. 7.5 External Interface
      1. 7.5.1 DRVOFF - Gate Driver Shutdown Functionality
      2. 7.5.2 DAC outputs
      3. 7.5.3 Current Sense Amplifier Output
      4. 7.5.4 Oscillator Source
        1. 7.5.4.1 External Clock Source
    6. 7.6 EEPROM access and I2C interface
      1. 7.6.1 EEPROM Access
        1. 7.6.1.1 EEPROM Write
        2. 7.6.1.2 EEPROM Read
      2. 7.6.2 I2C Serial Interface
        1. 7.6.2.1 I2C Data Word
        2. 7.6.2.2 I2C Write Operation
        3. 7.6.2.3 I2C Read Operation
        4. 7.6.2.4 Examples of I2C Communication Protocol Packets
        5. 7.6.2.5 Internal Buffers
        6. 7.6.2.6 CRC Byte Calculation
    7. 7.7 EEPROM (Non-Volatile) Register Map
      1. 7.7.1 Algorithm_Configuration Registers
      2. 7.7.2 Internal_Algorithm_Configuration Registers
      3. 7.7.3 Hardware_Configuration Registers
      4. 7.7.4 Fault_Configuration Registers
    8. 7.8 RAM (Volatile) Register Map
      1. 7.8.1 Fault_Status Registers
      2. 7.8.2 Algorithm_Control Registers
      3. 7.8.3 System_Status Registers
      4. 7.8.4 Device_Control Registers
      5. 7.8.5 Algorithm_Variables Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1.      Detailed Design Procedure
      2.      Bootstrap Capacitor and GVDD Capacitor Selection
      3. 8.2.1 Selection of External MOSFET for VREG Power Supply
      4.      Gate Drive Current
      5.      Gate Resistor Selection
      6.      System Considerations in High Power Designs
      7.      Capacitor Voltage Ratings
      8.      External Power Stage Components
      9. 8.2.2 Application curves
        1. 8.2.2.1 Motor startup
        2.       High speed (1.8 kHz) operation
        3.       Active Braking for faster deceleration
        4. 8.2.2.2 Dead Time compensation
  10. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
      1. 10.3.1 Power Dissipation
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bulk Capacitance

Having an appropriate local bulk capacitance is an important factor in motor drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors, including:

  • The highest current required by the motor system
  • The capacitance and current capability of the power supply
  • The amount of parasitic inductance between the power supply and motor system
  • The acceptable voltage ripple
  • The type of motor used (brushed DC, brushless DC, stepper)
  • The motor braking method

The inductance between the power supply and the motor drive system limits the rate at which current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in PVDD voltage. When adequate bulk capacitance is used, the PVDD voltage remains stable and high current can be quickly supplied.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate bulk capacitor. The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply.

GUID-6CB3ED1C-0FE3-454A-B691-426AB59366F4-low.gifFigure 9-1 Example Setup of Motor Drive System With External Power Supply