SCDS384B September   2018  – August 2025 TMUX6119

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Thermal Information
    4. 5.4 Recommended Operating Conditions
    5. 5.5 Electrical Characteristics (Dual Supplies: ±15V)
    6. 5.6 Switching Characteristics (Dual Supplies: ±15V)
    7. 5.7 Electrical Characteristics (Single Supply: 12V)
    8. 5.8 Switching Characteristics (Single Supply: 12V)
    9. 5.9 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Truth Tables
  8. Detailed Description
    1. 7.1 Overview
      1. 7.1.1  On-Resistance
      2. 7.1.2  Off-Leakage Current
      3. 7.1.3  On-Leakage Current
      4. 7.1.4  Transition Time
      5. 7.1.5  Break-Before-Make Delay
      6. 7.1.6  Enable Turn-On and Enable Turn-Off Time
      7. 7.1.7  Charge Injection
      8. 7.1.8  Off Isolation
      9. 7.1.9  Channel-to-Channel Crosstalk
      10. 7.1.10 Bandwidth
      11. 7.1.11 THD + Noise
      12. 7.1.12 AC Power Supply Rejection Ratio (AC PSRR)
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Ultra-low Leakage Current
      2. 7.3.2 Ultra-low Charge Injection
      3. 7.3.3 Bidirectional and Rail-to-Rail Operation
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Trademarks
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

  1. Source off-leakage current
  2. Drain off-leakage current

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol IS(OFF).

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol ID(OFF).

The setup used to measure both off-leakage currents is shown in Figure 7-2.

TMUX6119 Off-Leakage Measurement SetupFigure 7-2 Off-Leakage Measurement Setup