SLVSH72 December   2023 TPS281C100

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SNS Timing Characteristics
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Device Functional Modes
    4. 8.4 Working Mode
    5. 8.5 Feature Description
      1. 8.5.1 Accurate Current Sense
        1. 8.5.1.1 High Accuracy Sense Mode
      2. 8.5.2 Programmable Current Limit
        1. 8.5.2.1 Short-Circuit and Overload Protection
        2. 8.5.2.2 Capacitive Charging
      3. 8.5.3 Inductive-Load Switching-Off Clamp
      4. 8.5.4 Inductive Load Demagnetization
      5. 8.5.5 Full Protections and Diagnostics
        1. 8.5.5.1 Open-Load Detection
        2. 8.5.5.2 Thermal Protection Behavior
        3. 8.5.5.3 Undervoltage Lockout (UVLO) Protection
        4. 8.5.5.4 Reverse Polarity Protection
        5. 8.5.5.5 Protection for MCU I/Os
        6. 8.5.5.6 Diagnostic Enable Function
        7. 8.5.5.7 Loss of Ground
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 IEC 61000-4-4 EFT
        2. 9.2.1.2 IEC 61000-4-5 Surge
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Selecting RILIM
        2. 9.2.2.2 Selecting RSNS
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 EMC Considerations
      2. 9.4.2 Layout Example
        1. 9.4.2.1 PWP Layout Without a GND Network
        2. 9.4.2.2 PWP Layout With a GND Network
        3. 9.4.2.3 DNT Layout Without a GND Network
      3. 9.4.3 Thermal Considerations
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DNT|12
Thermal pad, mechanical data (Package|Pins)
Orderable Information

IEC 61000-4-5 Surge

To pass the IEC61000-4-5 surge for TPS281C100, both input and output TVS diodes are needed to help absorb the surge energy. There are certain requirements on the input and output TVS diodes selection listed below.

Output TVS requirements:

Output TVS can serve two purposes: absorb the surge energy for the output surge, and help demagnetize the inductive energy during an inductive turn off. To ensure the output TVS clamps before the internal VDS clamp comes in during an output surge event, the clamping voltage the TVS needs to be selected so that VS + VTVS, CLMAP < VDS, Clamp, min. For standard 24V input system, SMBJ33CA is recommended at the output.

Input TVS requirements:

Input TVS needs to be selected so it doesn't interfere with normal operation. The reverse standoff voltage of the input TVS needs to be greater than the normal operation input voltage. The other requirement is that the input TVS needs to be equal or higher voltage rated than the output TVS, and it ensures that the surge energy is clamped by the output TVS instead of the input TVS when there is a output surge. For standard 24V input system, SMBJ36A is recommended at the input. Please note that a uni-directional TVS at the input is needed so the absolute minimum voltage of the device is not violated for negative input surge.