JAJSHI5G august   2012  – april 2023 DLP7000

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. 概要 (続き)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  Storage Conditions
    3. 7.3  ESD Ratings
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Thermal Information
    6. 7.6  Electrical Characteristics
    7. 7.7  LVDS Timing Requirements
    8. 7.8  LVDS Waveform Requirements
    9. 7.9  Serial Control Bus Timing Requirements
    10. 7.10 Systems Mounting Interface Loads
    11. 7.11 Micromirror Array Physical Characteristics
    12. 7.12 Micromirror Array Optical Characteristics
    13. 7.13 Window Characteristics
    14. 7.14 Chipset Component Usage Specification
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 DLPC410 Chipset DMD Features
        1. 8.3.1.1 DLPC410 - Digital Controller for DLP Discovery 4100 Chipset
        2. 8.3.1.2 DLPA200 - DMD Micromirror Driver
        3. 8.3.1.3 DLPR410 - PROM for DLP Discovery 4100 Chipset
        4. 8.3.1.4 DLP7000 - DLP 0.7 XGA 2xLVDS Type-A DMD
          1. 8.3.1.4.1 DLP7000 XGA Chip Set Interfaces
            1. 8.3.1.4.1.1 DLPC410 Interface Description
              1. 8.3.1.4.1.1.1 DLPC410 IO
              2. 8.3.1.4.1.1.2 Initialization
              3. 8.3.1.4.1.1.3 DMD Device Detection
              4. 8.3.1.4.1.1.4 Power Down
          2. 8.3.1.4.2 DLPC410 to DMD Interface
            1. 8.3.1.4.2.1 DLPC410 to DMD IO Description
            2. 8.3.1.4.2.2 Data Flow
          3. 8.3.1.4.3 DLPC410 to DLPA200 Interface
            1. 8.3.1.4.3.1 DLPA200 Operation
            2. 8.3.1.4.3.2 DLPC410 to DLPA200 IO Description
          4. 8.3.1.4.4 DLPA200 to DLP7000 Interface
            1. 8.3.1.4.4.1 DLPA200 to DLP7000 Interface Overview
        5. 8.3.1.5 Measurement Conditions
    4. 8.4 Device Functional Modes
      1. 8.4.1 DMD Operation
        1. 8.4.1.1 Single Block Mode
        2. 8.4.1.2 Dual Block Mode
        3. 8.4.1.3 Quad Block Mode
        4. 8.4.1.4 Global Mode
    5. 8.5 Optical Interface and System Image Quality Considerations
      1. 8.5.1 Optical Interface and System Image Quality
      2. 8.5.2 Numerical Aperture and Stray Light Control
      3. 8.5.3 Pupil Match
      4. 8.5.4 Illumination Overfill
    6. 8.6 Micromirror Array Temperature Calculation
      1. 8.6.1 Package Thermal Resistance
      2. 8.6.2 Case Temperature
      3. 8.6.3 Micromirror Array Temperature Calculation - Lumens Based (typically used for display applications)
      4. 8.6.4 Micromirror Array Temperature Calculation - Power Density Based
      5. 8.6.5 62
    7. 8.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 8.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 8.7.2 Landed Duty Cycle and Useful Life of the DMD
      3. 8.7.3 Landed Duty Cycle and Operational DMD Temperature
      4. 8.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Device Description
      3. 9.2.3 Detailed Design Procedure
  10. 10Power Supply Recommendations
    1. 10.1 DMD Power-Up and Power-Down Procedures
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Impedance Requirements
      2. 11.1.2 PCB Signal Routing
      3. 11.1.3 DMD Interface
        1. 11.1.3.1 Trace Length Matching
      4. 11.1.4 DLP7000 Decoupling
        1. 11.1.4.1 Decoupling Capacitors
      5. 11.1.5 VCC and VCC2
      6. 11.1.6 DMD Layout
      7. 11.1.7 DLPA200
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1  Device Support
      1. 12.1.1 Device Marking
    2. 12.2  サード・パーティ製品に関する免責事項
    3. 12.3  Documentation Support
      1. 12.3.1 Related Documents
    4. 12.4  ドキュメントの更新通知を受け取る方法
    5. 12.5  サポート・リソース
    6. 12.6  静電気放電に関する注意事項
    7. 12.7  Export Control Notice
    8. 12.8  用語集
    9. 12.9  Related Links
    10. 12.10 Trademarks
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Estimating the Long-Term Average Landed Duty Cycle of a Product or Application

During a given period of time, the Landed Duty Cycle of a given pixel follows from the image content being displayed by that pixel.

For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel will experience a 100/0 Landed Duty Cycle during that time period. Likewise, when displaying pure-black, the pixel will experience a 0/100 Landed Duty Cycle.

Between the two extremes (ignoring for the moment color and any image processing that may be applied to an incoming image), the Landed Duty Cycle tracks one-to-one with the gray scale value, as shown in Table 8-5.

Table 8-5 Grayscale Value and Landed Duty Cycle
GRAYSCALE VALUELANDED DUTY CYCLE
0%0/100
10%10/90
20%20/80
30%30/70
40%40/60
50%50/50
60%60/40
70%70/30
80%80/20
90%90/10
100%100/0

Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from 0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color cycle time for each primary color, where “color cycle time” is the total percentage of the frame time that a given primary must be displayed in order to achieve the desired white point.

During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:

Equation 1. Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% × Blue_Scale_Value)

where

  • Red_Cycle_%, Green_Cycle_%, and Blue_Cycle_%, represent the percentage of the frame time that Red, Green, and Blue are displayed (respectively) to achieve the desired white point.

For example, assume that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (in order to achieve the desired white point), then the Landed Duty Cycle for various combinations of red, green, blue color intensities would be as shown in Table 8-6.

Table 8-6 Example Landed Duty Cycle for Full-Color
RED CYCLE PERCENTAGE
50%
GREEN CYCLE PERCENTAGE
20%
BLUE CYCLE PERCENTAGE
30%
LANDED DUTY CYCLE
RED SCALE VALUEGREEN SCALE VALUEBLUE SCALE VALUE
0%0%0%0/100
100%0%0%50/50
0%100%0%20/80
0%0%100%30/70
12%0%0%6/94
0%35%0%7/93
0%0%60%18/82
100%100%0%70/30
0%100%100%50/50
100%0%100%80/20
12%35%0%13/87
0%35%60%25/75
12%0%60%24/76
100%100%100%100/0