JAJSAR0B March   2007  – October 2017 LM95214

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     リモート1温度エラー、TA=TD
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: Temperature-to-Digital Converter
    6. 7.6 Logic Electrical Characteristics: Digital DC Characteristics
    7. 7.7 Switching Characteristics: SMBus Digital
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Conversion Sequence
      2. 8.3.2 Power-On-Default States
      3. 8.3.3 SMBus Interface
      4. 8.3.4 Temperature Conversion Sequence
        1. 8.3.4.1 Digital Filter
      5. 8.3.5 Fault Queue
      6. 8.3.6 Temperature Data Format
      7. 8.3.7 SMBDAT Open-Drain Output
      8. 8.3.8 TCRIT1, TCRIT2, and TCRIT3 Outputs
      9. 8.3.9 TCRIT Limits and TCRIT Outputs
    4. 8.4 Device Functional Modes
      1. 8.4.1 Diode Fault Detection
      2. 8.4.2 Communicating With the LM95214
      3. 8.4.3 Serial Interface Reset
      4. 8.4.4 One-Shot Conversion
    5. 8.5 Register Maps
      1. 8.5.1 LM95214 Registers
        1. 8.5.1.1 Value Registers
          1. 8.5.1.1.1 Local Value Registers
          2. 8.5.1.1.2 Remote Temperature Value Registers With Signed Format
          3. 8.5.1.1.3 Remote Temperature Value Registers With Unsigned Format
        2. 8.5.1.2 Diode Configuration Register
          1. 8.5.1.2.1 Remote 1-4 Offset
        3. 8.5.1.3 Configuration Registers
          1. 8.5.1.3.1 Main Configuration Register
          2. 8.5.1.3.2 Conversion Rate Register
          3. 8.5.1.3.3 Channel Conversion Enable
          4. 8.5.1.3.4 Filter Setting
          5. 8.5.1.3.5 1-Shot
        4. 8.5.1.4 Status Registers
          1. 8.5.1.4.1 Common Status Register
          2. 8.5.1.4.2 Status 1 Register (Diode Fault)
          3. 8.5.1.4.3 Status 2 (TCRIT1)
          4. 8.5.1.4.4 Status 3 (TCRIT2)
          5. 8.5.1.4.5 Status 4 (TCRIT3)
        5. 8.5.1.5 Mask Registers
          1. 8.5.1.5.1 TCRIT1 Mask Register
          2. 8.5.1.5.2 TCRIT2 Mask Registers
          3. 8.5.1.5.3 TCRIT3 Mask Register
        6. 8.5.1.6 Limit Registers
          1. 8.5.1.6.1 Local Limit Register
          2. 8.5.1.6.2 Remote Limit Registers
          3. 8.5.1.6.3 Common Tcrit Hysteresis Register
        7. 8.5.1.7 Identification Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
    3. 9.3 Diode Non-Ideality
      1. 9.3.1 Diode Non-Ideality Factor Effect on Accuracy
      2. 9.3.2 Calculating Total System Accuracy
      3. 9.3.3 Compensating for Different Non-Ideality
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 ドキュメントの更新通知を受け取る方法
    2. 12.2 コミュニティ・リソース
    3. 12.3 商標
    4. 12.4 静電気放電に関する注意事項
    5. 12.5 Glossary
  13. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Calculating Total System Accuracy

The voltage seen by the LM95214 also includes the IFRS voltage drop of the series resistance. The non-ideality factor, η, is the only other parameter not accounted for and depends on the diode that is used for measurement. Because ΔVBE is proportional to both η and T, the variations in η cannot be distinguished from variations in temperature. Because the non-ideality factor is not controlled by the temperature sensor, it will directly add to the inaccuracy of the sensor. For the for Intel processor on 65 nm process, Intel specifies a +4.06%/−0.897% variation in η from part to part when the processor diode is measured by a circuit that assumes diode equation, Equation 4, as true. As an example, assume a temperature sensor has an accuracy specification of ±1.0°C at a temperature of 80°C (353 Kelvin) and the processor diode has a non-ideality variation of +1.19%/−0.27%. The resulting system accuracy of the processor temperature being sensed will be:

TACC = + 1.0°C + (+4.06% of 353 K) = +15.3°C

and

TACC = –1.0°C + (−0.89% of 353 K) = –4.1°C

The next error term to be discussed is that due to the series resistance of the thermal diode and printed-circuit board traces. The thermal diode series resistance is specified on most processor data sheets. For the MMBT3904 transistor, this is specified at 0 Ω typical. The LM95214 accommodates the typical series resistance of a circuit with the offset register compensation. The error that is not accounted for is the spread of the thermal diodes series resistance. If a circuit has a series resistance spread that is 2.79 Ω to 6.24 Ω or 4.515 Ω ±1.73 Ω, the 4.515 Ω can be cancelled out with the offset register setting. The ±1.73 Ω spread cannot be cancelled out. The equation to calculate the temperature error due to series resistance (TER) for the LM95214 is simply:

Equation 6. LM95214 30006138.gif

Solving Equation 6 for RPCB equal to ±1.73 Ω results in the additional error due to the spread in the series resistance of ±1.07°C. The bulk of the error caused by the 4.515 Ω will cause a positive offset in the temperature reading of 2.79°C, which can be cancelled out by setting the offset register to –2.75°C. The spread in error cannot be canceled out, as it would require measuring each individual thermal diode device. This is quite difficult and impractical in a large volume production environment.

Equation 6 can also be used to calculate the additional error caused by series resistance on the printed circuit board. Because the variation of the PCB series resistance is minimal, the bulk of the error term is always positive and can simply be cancelled out by subtracting it from the output readings of the LM95214.

PROCESSOR FAMILY DIODE EQUATION ηD, non-ideality SERIES R,Ω
MIN TYP MAX
Pentium III CPUID 67h 1 1.0065 1.0125
Pentium III CPUID 68h/PGA370Socket/
Celeron
1.0057 1.008 1.0125
Pentium 4, 423 pin 0.9933 1.0045 1.0368
Pentium 4, 478 pin 0.9933 1.0045 1.0368
Pentium 4 on 0.13 micron process, 2 - 3.06 GHz 1.0011 1.0021 1.0030 3.64
Pentium 4 on 90 nm process 1.0083 1.011 1.023 3.33
Intel Processor on 65 nm process 1.000 1.009 1.050 4.52
Pentium M (Centrino) 1.00151 1.00220 1.00289 3.06
MMBT3904 1.003
AMD Athlon MP model 6 1.002 1.008 1.016
AMD Athlon 64 1.008 1.008 1.096
AMD Opteron 1.008 1.008 1.096
AMD Sempron 1.00261 0.93