JAJSAR0B March   2007  – October 2017 LM95214

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     リモート1温度エラー、TA=TD
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: Temperature-to-Digital Converter
    6. 7.6 Logic Electrical Characteristics: Digital DC Characteristics
    7. 7.7 Switching Characteristics: SMBus Digital
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Conversion Sequence
      2. 8.3.2 Power-On-Default States
      3. 8.3.3 SMBus Interface
      4. 8.3.4 Temperature Conversion Sequence
        1. 8.3.4.1 Digital Filter
      5. 8.3.5 Fault Queue
      6. 8.3.6 Temperature Data Format
      7. 8.3.7 SMBDAT Open-Drain Output
      8. 8.3.8 TCRIT1, TCRIT2, and TCRIT3 Outputs
      9. 8.3.9 TCRIT Limits and TCRIT Outputs
    4. 8.4 Device Functional Modes
      1. 8.4.1 Diode Fault Detection
      2. 8.4.2 Communicating With the LM95214
      3. 8.4.3 Serial Interface Reset
      4. 8.4.4 One-Shot Conversion
    5. 8.5 Register Maps
      1. 8.5.1 LM95214 Registers
        1. 8.5.1.1 Value Registers
          1. 8.5.1.1.1 Local Value Registers
          2. 8.5.1.1.2 Remote Temperature Value Registers With Signed Format
          3. 8.5.1.1.3 Remote Temperature Value Registers With Unsigned Format
        2. 8.5.1.2 Diode Configuration Register
          1. 8.5.1.2.1 Remote 1-4 Offset
        3. 8.5.1.3 Configuration Registers
          1. 8.5.1.3.1 Main Configuration Register
          2. 8.5.1.3.2 Conversion Rate Register
          3. 8.5.1.3.3 Channel Conversion Enable
          4. 8.5.1.3.4 Filter Setting
          5. 8.5.1.3.5 1-Shot
        4. 8.5.1.4 Status Registers
          1. 8.5.1.4.1 Common Status Register
          2. 8.5.1.4.2 Status 1 Register (Diode Fault)
          3. 8.5.1.4.3 Status 2 (TCRIT1)
          4. 8.5.1.4.4 Status 3 (TCRIT2)
          5. 8.5.1.4.5 Status 4 (TCRIT3)
        5. 8.5.1.5 Mask Registers
          1. 8.5.1.5.1 TCRIT1 Mask Register
          2. 8.5.1.5.2 TCRIT2 Mask Registers
          3. 8.5.1.5.3 TCRIT3 Mask Register
        6. 8.5.1.6 Limit Registers
          1. 8.5.1.6.1 Local Limit Register
          2. 8.5.1.6.2 Remote Limit Registers
          3. 8.5.1.6.3 Common Tcrit Hysteresis Register
        7. 8.5.1.7 Identification Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
    3. 9.3 Diode Non-Ideality
      1. 9.3.1 Diode Non-Ideality Factor Effect on Accuracy
      2. 9.3.2 Calculating Total System Accuracy
      3. 9.3.3 Compensating for Different Non-Ideality
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 ドキュメントの更新通知を受け取る方法
    2. 12.2 コミュニティ・リソース
    3. 12.3 商標
    4. 12.4 静電気放電に関する注意事項
    5. 12.5 Glossary
  13. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Compensating for Different Non-Ideality

To compensate for the errors introduced by non-ideality, the temperature sensor is calibrated for a particular processor. Texas Instruments temperature sensors are always calibrated to the typical non-ideality and series resistance of a given transistor type. The LM95214 is calibrated for the non-ideality factor and series resistance values of the MMBT3904 transistor without the requirement for additional trims. When a temperature sensor calibrated for a particular thermal diode type is used with a different thermal diode type, additional errors are introduced.

Temperature errors associated with non-ideality of different processor types may be reduced in a specific temperature range of concern through use of software calibration. Typical Non-ideality specification differences cause a gain variation of the transfer function, therefore the center of the temperature range of interest must be the target temperature for calibration purposes. The Equation 7 can be used to calculate the temperature correction factor (TCF) required to compensate for a target non-ideality differing from that supported by the LM95214.

Equation 7. LM95214 30006139.gif

where

  • ηS = LM95214 non-ideality for accuracy specification
  • ηPROCESSOR = Processor thermal diode typical non-ideality
  • TCR = center of the temperature range of interest in °C

The correction factor must be directly added to the temperature reading produced by the LM95214. For example when using the LM95214, with the 3904 mode selected, to measure a AMD Athlon processor, with a typical non-ideality of 1.008, for a temperature range of 60°C to 100°C the correction factor would calculate to:

Equation 8. LM95214 30006140.gif

Therefore, 1.75°C must be subtracted from the temperature readings of the LM95214 to compensate for the differing typical non-ideality target.