SBOA602 November   2024 OPA593

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Current Booster, Push-Pull Topology Output Characteristics
    1. 2.1 Open-Loop Output Impedance
    2. 2.2 Minimizing Zero Crossover Distortion
  6. 3Various Current Booster Configurations
    1. 3.1 Complementary MOSFET versus BJT Current Booster Comparisons
  7. 4Stabilizing a Design for Power Amplifier Driving 1μF Capacitive Load (CL)
    1. 4.1 Op-Amp Driving Resistive Load
    2. 4.2 Op-Amp Driving Capacitive Load and Challenges
    3. 4.3 Open-Loop AC Stability Analysis - Compensating CL Effects Using DFC
    4. 4.4 Closed-Loop Stability Response - Small Signal Step Transient Analysis
    5. 4.5 Effects of Riso on Frequency Response in Dual Feedback Compensation
    6. 4.6 Summary of the DFC Technique
  8. 5Stabilizing the OPA593 and Darlington Current Booster for 1μF Capacitive Load
    1. 5.1 Open-Loop AC Stability Analysis - Composite Op-Amp Driving 1μF CL
    2. 5.2 Closed-Loop Stability Response - Composite Op-Amp's Step Transient Analysis
  9. 6Composite Amplifier's Effective BW and Step Time Response
  10. 7Test Bench Validation
  11. 8Summary
  12. 9References

Various Current Booster Configurations

Various current booster pairs are designed for this application, with "C" indicating complementary pairs in which power transistors must be matched for ATE applications. Options include discrete CMOSFET, CBJT, or CIGBT, as well as integrated open-loop buffers (for example, BUF634A, LME49600) and power amplifiers utilized as unity gain buffers (for example, OPA593, OPA544). Table 3-1 compares the advantages and disadvantages of CMOSFET and CBJT current boosters, emphasizing key trade-offs and differences. Choosing the correct current booster requires understanding these variations and the implications for performance and cost.