SBOA602 November   2024 OPA593

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Current Booster, Push-Pull Topology Output Characteristics
    1. 2.1 Open-Loop Output Impedance
    2. 2.2 Minimizing Zero Crossover Distortion
  6. 3Various Current Booster Configurations
    1. 3.1 Complementary MOSFET versus BJT Current Booster Comparisons
  7. 4Stabilizing a Design for Power Amplifier Driving 1μF Capacitive Load (CL)
    1. 4.1 Op-Amp Driving Resistive Load
    2. 4.2 Op-Amp Driving Capacitive Load and Challenges
    3. 4.3 Open-Loop AC Stability Analysis - Compensating CL Effects Using DFC
    4. 4.4 Closed-Loop Stability Response - Small Signal Step Transient Analysis
    5. 4.5 Effects of Riso on Frequency Response in Dual Feedback Compensation
    6. 4.6 Summary of the DFC Technique
  8. 5Stabilizing the OPA593 and Darlington Current Booster for 1μF Capacitive Load
    1. 5.1 Open-Loop AC Stability Analysis - Composite Op-Amp Driving 1μF CL
    2. 5.2 Closed-Loop Stability Response - Composite Op-Amp's Step Transient Analysis
  9. 6Composite Amplifier's Effective BW and Step Time Response
  10. 7Test Bench Validation
  11. 8Summary
  12. 9References

Summary

This article explores the OPA593 in a current booster topology, using the DFC compensation technique to stabilize large capacitive loads in a voltage regulator configuration. The application note provides a comprehensive approach to compensating the power output stage and managing large capacitive loads in ATE applications. By implementing the DFC technique, the design makes sure loop stability for composite amplifiers, improves system bandwidth, and optimizes performance - critical factors for supporting high-current ATE systems.