SPRADN0 December   2024 F29H850TU , F29H859TU-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Programming Fundamentals
  5. 2Introduction
    1. 2.1 Hardware Security Module
    2. 2.2 ROM Bootloader
    3. 2.3 Combined Image with X.509 Certificate
  6. 3Flash Kernel Implementation
    1. 3.1 CPU1 Firmware Upgrade (HS-FS)
    2. 3.2 Key Provision (HS-FS to HS-KP)
    3. 3.3 CPU1 Secure Firmware Upgrade (HS-KP/SE to HS-SE)
    4. 3.4 HSM Firmware Upgrade (HS-KP/SE to HS-SE)
    5. 3.5 SECCFG Code Provisioning (HS-KP/SE to HS-SE)
  7. 4Host Application: UART Flash Programmer
    1. 4.1 Overview
    2. 4.2 Build UART Flash Programmer with Visual Studio
    3. 4.3 Build UART Flash Programmer with CMake
    4. 4.4 Packet Format
    5. 4.5 Kernel Commands
  8. 5Example Usage
    1. 5.1 Loading the Flash Kernel onto the Device
      1. 5.1.1 Hardware Setup
      2. 5.1.2 Running the UART Flash Programmer
    2. 5.2 CPU1 Device Firmware Upgrade (HS-FS only)
    3. 5.3 Convert HS-FS to HS-SE
    4. 5.4 Loading a RAM-based HSMRt Image
    5. 5.5 Key Provision (HS-FS to HS-KP)
    6. 5.6 Code Provision (HS-KP/SE to HS-SE)
  9. 6Troubleshooting
    1. 6.1 General
    2. 6.2 UART Boot
    3. 6.3 Application Load
  10. 7Summary
  11. 8References

Loading the Flash Kernel onto the Device

The first step of performing a firmware upgrade on the F29H85x is to load the flash kernel to RAM via the ROM bootloader. Make sure to load the appropriate build configuration for the desired behavior. For example, for CPU1 DFU of an HS-FS device, make sure the CPU1_APP build configuration is selected when compiling the kernel. Here are the steps required to achieve this:

  1. Configure the Boot Mode Select Pins to put the device in UART boot mode.
  2. Reset the device.
  3. Send the kernel to the device via the UART host programmer.

These steps are described in more detail below.