DLPS210C March   2021  – September 2025 DLP651NE

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  Storage Conditions
    3. 5.3  ESD Ratings
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Thermal Information
    6. 5.6  Electrical Characteristics
    7. 5.7  Switching Characteristics
    8.     14
    9. 5.8  Timing Requirements
    10.     16
    11. 5.9  System Mounting Interface Loads
    12.     18
    13. 5.10 Micromirror Array Physical Characteristics
    14.     20
    15. 5.11 Micromirror Array Optical Characteristics
    16. 5.12 Window Characteristics
    17. 5.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power Interface
      2. 6.3.2 Timing
    4. 6.4 Device Functional Modes
    5. 6.5 Optical Interface and System Image Quality Considerations
      1. 6.5.1 Numerical Aperture and Stray Light Control
      2. 6.5.2 Pupil Match
      3. 6.5.3 Illumination Overfill
    6. 6.6 Micromirror Array Temperature Calculation
    7. 6.7 Micromirror Power Density Calculation
    8. 6.8 Window Aperture Illumination Overfill Calculation
    9. 6.9 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 6.9.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 6.9.2 Landed Duty Cycle and Useful Life of the DMD
      3. 6.9.3 Landed Duty Cycle and Operational DMD Temperature
      4. 6.9.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curve
    3. 7.3 Temperature Sensor Diode
  9. Power Supply Recommendations
    1. 8.1 Power Supply Sequence Requirements
    2. 8.2 DMD Power Supply Power-Up Procedure
    3. 8.3 DMD Power Supply Power-Down Procedure
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Impedance Requirements
    3. 9.3 Layers
    4. 9.4 Trace Width, Spacing
    5. 9.5 Power
    6. 9.6 Trace Length Matching Recommendations
  11. 10Device and Documentation Support
    1. 10.1 Third-Party Products Disclaimer
    2. 10.2 Device Support
      1. 10.2.1 Device Nomenclature
      2. 10.2.2 Device Markings
    3. 10.3 Documentation Support
      1. 10.3.1 Related Documentation
    4. 10.4 Receiving Notification of Documentation Updates
    5. 10.5 Support Resources
    6. 10.6 Trademarks
    7. 10.7 Electrostatic Discharge Caution
    8. 10.8 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information

Recommended Operating Conditions

Over operating free-air temperature range and supply voltages (unless otherwise noted) (1)
PARAMETER NAMEMINNOMMAXUNIT
Supply Voltages(2)(3)
VDDSupply voltage for LVCMOS core logic and low speed interface (LSIF)1.711.81.95V
VDDASupply voltage for high speed serial interface (HSSI) receivers1.711.81.95V
VOFFSETSupply voltage for HVCMOS and micromirror electrode(4)9.51010.5V
VBIASSupply voltage for micromirror electrode15.51616.5V
VRESETSupply voltage for micromirror electrode–12.5–12–11.5V
| VDDA – VDD |Supply voltage delta, absolute value(5)0.3V
| VBIASVOFFSET |Supply voltage delta, absolute value(6)10.5V
| VBIAS – VRESET |Supply voltage delta, absolute value29V
LVCMOS Input
VIHHigh level input voltage(7)0.7 × VDDV
VILLow level input voltage(7)0.3 × VDDV
Low Speed Interface (LSIF)
fCLOCKLSIF clock frequency (LS_CLK)(8)108120130MHz
DCDINLSIF duty cycle distortion (LS_CLK)44%56%
| VID |LSIF differential input voltage magnitude(8)150350440mV
VLVDSLSIF voltage(8)5751520mV
VCMCommon mode voltage(8)7009001300mV
ZLINELine differential impedance (PWB/trace)90100110Ω
ZINInternal differential termination resistance80100120Ω
High Speed Serial Interface (HSSI)
fCLOCKHSSI clock frequency (DCLK)(9)1.21.6GHz
DCDINHSSI duty cycle distortion (DCLK)44%50%56%
| VID | DataHSSI differential input voltage magnitude Data Lane(9)100600mV
| VID | CLKHSSI differential input voltage magnitude Clock Lane(9)295600mV
VCMDC DataInput common mode voltage (DC) Data Lane(9)200600800mV
VCMDC CLKInput common mode voltage (DC) Clk Lane(9)200600800mV
VCMACp-pAC peak to peak (ripple) on common mode voltage of Data Lane and Clock Lane(9)  100mV
ZLINELine differential impedance (PWB/trace)100Ω
ZINInternal differential termination resistance (RXterm)80100120Ω
Environmental
TARRAYArray temperature, long-term operational(10)(11)(12)(13)1040 to 70°C
Array temperature, short-term operational, 500hr max(11)(14)010°C
TDP-AVGAverage dew point temperature (non-condensing)(15)28°C
TDP-ELRElevated dew point temperature range (non-condensing)(16)2836°C
CTELRCumulative time in elevated dew point temperature range24Months
QAP-ILLWindow aperture illumination overfill(17)(18)17W/cm2
LAMP ILLUMINATION
ILLUVIllumination wavelength < 395nm(10)0.682mW/cm2
ILLVISIllumination wavelengths between 395nm and 800nm29.3W/cm2
ILLIRIllumination wavelength > 800nm10mW/cm2
SOLID STATE ILLUMINATION
ILLUVIllumination wavelength < 410nm(10)3mW/cm2
ILLVISIllumination wavelengths between 410nm and 800nm34.7W/cm2
ILLIRIllumination wavelength > 800nm10mW/cm2
Per Figure 5-1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD experiences in the end application. Refer to Micromirror Landed Duty Cycle for a definition of micromirror landed duty cycle.
The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.
Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total cumulative time of CTELR.
The active area of the DMD is surrounded by an aperture on the inside of the DMD window surface that masks structures of the DMD device assembly from normal view.  The aperture is sized to anticipate several optical conditions. Overfill light illuminating the area outside the active array can scatter and create adverse effects on the performance of an end application using the DMD. The illumination optical system should be designed to minimize light flux incident outside the active array. Depending on the particular system's optical architecture and assembly tolerances, the amount of overfill light on the outside of the active array may cause system performance degradation.
Applies to the region in red in Figure 5-2.

DLP651NE Maximum Recommended Array Temperature—Derating CurveFigure 5-1 Maximum Recommended Array Temperature—Derating Curve

DLP651NE Illumination Overfill Diagram—Critical AreaFigure 5-2 Illumination Overfill Diagram—Critical Area