SLAA450G April   2010  – April 2020

 

  1.   Creating a Custom Flash-Based Bootloader (BSL)
    1.     Trademarks
    2. 1 5xx and 6xx Bootloader Customization
      1. 1.1 BSL Memory Layout
        1. 1.1.1 Z-Area
        2. 1.1.2 BSL Reserved Memory Locations
      2. 1.2 Device Start-up Sequence
        1. 1.2.1 BSL Protect Function
          1. 1.2.1.1 Protection of BSL Memory
          2. 1.2.1.2 Checking for BSL Invoke
      3. 1.3 TI-Supplied BSL Software
        1. 1.3.1 Software Overview
        2. 1.3.2 Software File Details
          1. 1.3.2.1 BSL430_Low_Level_Init.s43 (IAR) / BSL430_Low_Level_Init.asm (CCS)
          2. 1.3.2.2 BSL_Device_File.h
          3. 1.3.2.3 lnk430FXXXX_BSL_AREA.xcl (IAR) / MSP430Fxxxx_BSL.cmd (CCS)
        3. 1.3.3 Known Limitations in CCS CSL Code Example
          1. 1.3.3.1 Memory Allocation of BSL Code Under Linker Command File
          2. 1.3.3.2 BSL Functions Supported in the Default Setting Project
          3. 1.3.3.3 How to Accomodate Full Function of BSL
          4. 1.3.3.4 Using Modified boot_hook.h and boot.c (CCS Only)
      4. 1.4 Creation of Custom Peripheral Interface
        1. 1.4.1 PI_init ()
        2. 1.4.2 PI_receivePacket()
        3. 1.4.3 PI_sendData(int bufSize)
      5. 1.5 BSL Development and Debug
        1. 1.5.1 Development and Testing
        2. 1.5.2 Special Notes and Tips
        3. 1.5.3 USB BSL External Oscillator Frequency
    3. 2 G2xx Bootloader Creation and Customization
      1. 2.1 Target System Specification
      2. 2.2 BSL Specification
        1. 2.2.1 Functionality
          1. 2.2.1.1 Entry Sequence
          2. 2.2.1.2 Synchronization
          3. 2.2.1.3 Erasing Previous Flash Content
          4. 2.2.1.4 Receiving and Writing New User Data
          5. 2.2.1.5 Data Verification
        2. 2.2.2 Memory Footprint
        3. 2.2.3 Peripherals
      3. 2.3 Implementation
        1. 2.3.1 BSL Assembler Code
          1. 2.3.1.1 Save DCO Calibration Data
          2. 2.3.1.2 Linker Command File
            1. 2.3.1.2.1 Locating the Linker Command File
            2. 2.3.1.2.2 Modify Linker File
            3. 2.3.1.2.3 Force the IDE to Use Custom Linker File
          3. 2.3.1.3 Project Settings
        2. 2.3.2 User Application
      4. 2.4 BSL Operation
        1. 2.4.1 Hardware Setup
        2. 2.4.2 Connection to Host
          1. 2.4.2.1 Determining COM Port
          2. 2.4.2.2 Setup of COM Port
        3. 2.4.3 Operate BSL - Standard Sequence
        4. 2.4.4 Create New Code to Download Through BSL
          1. 2.4.4.1 Create Custom Application
          2. 2.4.4.2 Save Calibration Data
          3. 2.4.4.3 Make User Application Code a BSL Update File
            1. 2.4.4.3.1 Using CCS
            2. 2.4.4.3.2 Using IAR
          4. 2.4.4.4 Obtaining XOR Checksum
            1. 2.4.4.4.1 Send User Data
            2. 2.4.4.4.2 Read Checksum
            3. 2.4.4.4.3 Send Acquired Checksum
            4. 2.4.4.4.4 Verify Data
            5. 2.4.4.4.5 Save Checksum
        5. 2.4.5 Getting Ready for Production
    4. 3 Frequently Asked Questions (FAQ)
  2.   Revision History

Z-Area

When protected, the BSL memory cannot be read or jumped into from a location external to BSL memory. This protection makes the BSL more secure against erase and also prevents erroneous BSL execution. However, if the entire BSL memory space were protected in this way, it would also mean that user application code could not call the BSL in any way, such as an intentional BSL start-up or using certain public BSL functions.

The Z-Area is a special section of memory designed to allow for a protected BSL to be publically accessible in a controlled way. The Z-Area is a section of BSL memory between addresses 0x1000 and 0x100F that can be jumped to and read from external application code. The Z-Area functions as a gateway from which a jump can be performed to any location within the BSL memory. The default TI BSL uses this area for jumps to the start of the BSL and for jumps into BSL public functions.