SLLA475 December   2020 TCAN1144-Q1 , TCAN1146-Q1

 

  1. 1TCAN1144-Q1 and TCAN1146-Q1 Functional Safety Manual
  2. 2Trademarks
  3. 3Introduction
  4. 4TCAN114x-Q1 Hardware Component Functional Safety Capability
  5. 5Development Process for Management of Systematic Faults
    1. 5.1 TI New-Product Development Process
  6. 6TCAN1144-Q1 and TCAN1146-Q1 Component Overview
    1. 6.1 Targeted Applications
    2. 6.2 Hardware Component Functional Safety Concept
    3. 6.3 Functional Safety Constraints and Assumptions
  7. 7Description of Hardware Component Parts
    1. 7.1 CAN Transceiver
    2. 7.2 Digital Core
    3. 7.3 EEPROM
    4. 7.4 Power Control IP
      1. 7.4.1 Voltage Monitors
    5. 7.5 Thermal Shut Down
    6. 7.6 Digital Input/Outputs
  8. 8TCAN1144-Q1 and TCAN1146-Q1 Management of Random Faults
    1. 8.1 Fault Reporting
    2. 8.2 Functional Safety Mechanism Categories
    3. 8.3 Description of Functional Safety Mechanisms
      1. 8.3.1 CAN Communication
        1. 8.3.1.1 SM-1: CAN bus fault diagnostic
        2. 8.3.1.2 SM-2: Thermal shutdown; TSD
        3. 8.3.1.3 SM-3: CAN bus short circuit limiter, IOS
        4. 8.3.1.4 SM-4: CAN TXD pin dominant state timeout; tTXD_DTO
        5. 8.3.1.5 SM-17: CAN protocol
      2. 8.3.2 Supply Voltage Rail Monitoring
        1. 8.3.2.1 SM-5: VCC undervoltage; UVCC
        2. 8.3.2.2 SM-6: VSUP supply undervoltage; UVSUP
        3. 8.3.2.3 SM-7: VIO supply undervoltage; UVIO
      3. 8.3.3 SPI/Processor Communication
        1. 8.3.3.1 SM-8: Timout, Window or Q&A watchdog error - Normal mode
        2. 8.3.3.2 SM-9: SPI communication error; SPIERR
        3. 8.3.3.3 SM-10: Scratchpad write/read
        4. 8.3.3.4 SM-11: Sleep Wake Error Timer; tINACTIVE
      4. 8.3.4 Device Internal EEPROM
        1. 8.3.4.1 SM-12: Internal memory CRC; CRC_EEPROM
      5. 8.3.5 Floating Pins
        1. 8.3.5.1 SM-13: SCLK internal pull-up to VIO
        2. 8.3.5.2 SM-14: SDI internal pull-up to VIO
        3. 8.3.5.3 SM-15: nCS internal pull-up to VIO
        4. 8.3.5.4 SM-16: TXD internal pull-up to VIO
          1.        B Revision History

TI New-Product Development Process

Texas Instruments has been developing components for automotive and industrial markets since 1996. Automotive markets have strong requirements regarding quality management and product reliability. The TI new-product development process features many elements necessary to manage systematic faults. Additionally, the documentation and reports for these components can be used to assist with compliance to a wide range of standards for customer’s end applications including automotive and industrial systems (e.g ISO 26262-4, IEC 61508-2).

This component was developed using TI’s new product development process which has been certified as compliant to ISO 9001 / IATF 16949 as assessed by Bureau Veritas (BV).

The standard development process breaks development into phases:

  • Assess
  • Plan
  • Create
  • Validate

Figure 5-1 shows the standard process.

GUID-7A7D7E24-2659-4500-B409-E7F359915118-low.gifFigure 5-1 TI New-Product Development Process