SLUSG02 May   2025 TPS6286A06D

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
  7. Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Save Mode (PFM)
      2. 7.3.2 Forced PWM Mode
      3. 7.3.3 Low Dropout Operation (100% Duty Cycle)
      4. 7.3.4 Soft Start
      5. 7.3.5 Switch Current Limit and HICCUP Short-Circuit Protection
      6. 7.3.6 Undervoltage Lockout
      7. 7.3.7 Thermal Warning and Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable and Disable (EN)
      2. 7.4.2 Output Discharge
      3. 7.4.3 Power Good (PG)
      4. 7.4.4 Voltage Setting and Mode Selection (VSET/MODE)
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Setting the Output Voltage
        3. 8.2.2.3 Output Filter Design
        4. 8.2.2.4 Inductor Selection
        5. 8.2.2.5 Capacitor Selection
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
        1. 8.4.2.1 Thermal Considerations
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Layout Guidelines

A proper layout is critical for the operation of any switched mode power supply, especially at high switching frequencies. The PCB layout of the TPS6286A06D device requires careful attention to make sure of best performance. A poor layout can lead to issues like bad line and load regulation, instability, increased EMI radiation, and noise sensitivity. Refer to the Five Steps to a Great PCB Layout for a Step-Down Converter analog design journal for a detailed discussion of general best practices. The following are specific recommendations for the TPS6286A06D:

  • Place the input capacitor as close as possible to the VIN and GND pins of the device. This placement is the most critical component placement. Route the input capacitor or capacitors directly to the VIN and GND pins.
  • Place the output inductor close to the SW pins. Minimize the copper area at the switch node.
  • Place the output capacitor ground close to the GND pin and route directly. Minimize the length of the connection from the inductor to the output capacitor. Connect the OUT pin directly to the output capacitor.
  • Place the FB resistors R1 and R2 close to the FB pin and place R3 close to the VSET/MODE pin to minimize noise pickup.
  • Make the connections from the input voltage of the system and the connection to the load as wide as possible to minimize voltage drops.
  • Have a solid ground plane between GND and the input and output capacitor ground connections.