SLVSCV8E December   2015  – June 2025 TPS4H160-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Pin Current and Voltage Conventions
      2. 7.3.2 Accurate Current Sense
      3. 7.3.3 Adjustable Current Limit
      4. 7.3.4 Inductive-Load Switching-Off Clamp
      5. 7.3.5 Fault Detection and Reporting
        1. 7.3.5.1 Diagnostic Enable Function
        2. 7.3.5.2 Multiplexing of Current Sense
        3. 7.3.5.3 Fault Table
        4. 7.3.5.4 STx and FAULT Reporting
      6. 7.3.6 Full Diagnostics
        1. 7.3.6.1 Short-to-GND and Overload Detection
        2. 7.3.6.2 Open-Load Detection
          1. 7.3.6.2.1 Channel On
          2. 7.3.6.2.2 Channel Off
        3. 7.3.6.3 Short-to-Battery Detection
        4. 7.3.6.4 Reverse Polarity Detection
        5. 7.3.6.5 Thermal Fault Detection
          1. 7.3.6.5.1 Thermal Shutdown
      7. 7.3.7 Full Protections
        1. 7.3.7.1 UVLO Protection
        2. 7.3.7.2 Loss-of-GND Protection
        3. 7.3.7.3 Protection for Loss of Power Supply
        4. 7.3.7.4 Reverse-Current Protection
        5. 7.3.7.5 MCU I/O Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Working Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Examples
        1. 8.4.2.1 Without a GND Network
        2. 8.4.2.2 With a GND Network
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

STx and FAULT Reporting

For version A, four individual STx pins report the fault conditions, each pin for its respective channel. When a fault condition occurs, it pulls STx down to GND. A 3.3- or 5-V external pullup is required to match the supply level of the microcontroller. The digital status of each channel can be reported individually, or globally by connecting all the STx pins together.

For version B, a global FAULT pin is used to monitor the global fault condition among all the channels. When a fault condition occurs on any channel, the FAULT pin is pulled down to GND. A 3.3-V or 5-V external pullup is required to match the supply level of the microcontroller.

After the FAULT report, the microcontroller can check and identify the channel in fault status by multiplexed current sensing. The CS pin also works as a fault report with an internal pullup voltage, VCS(H).