SNAS758A February   2025  – June 2025 HDC3120

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Device Power-Up
      2. 7.3.2 Device Disable and Enable
      3. 7.3.3 Conversion of the Signal Output
        1. 7.3.3.1 Relative Humidity (RH%) Measurement
        2. 7.3.3.2 Temperature Measurement
      4. 7.3.4 NIST Traceability and Unique ID
      5. 7.3.5 Output Short Circuit Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 On-Chip Heater
        1. 7.4.1.1 Operating Principle
          1. 7.4.1.1.1 Heater Configuration Example
        2. 7.4.1.2 Heater Electrical Behavior
        3. 7.4.1.3 Heater Temperature Increase
        4. 7.4.1.4 Heater Usage Guidelines
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
    3. 8.3 Power Supply Recommendations
    4. 8.4 Rehydration Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
    6. 8.6 Storage and PCB Assembly
      1. 8.6.1 Storage and Handling
      2. 8.6.2 Product Storage
      3. 8.6.3 PCB Assembly Flow
      4. 8.6.4 Rework Consideration
      5. 8.6.5 Sensitivity to Chemicals and Vapors
      6. 8.6.6 Exposure to High Temperature and High Humidity Conditions
      7. 8.6.7 Recovering Sensor Performance: Bake and Rehydration Procedure
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Description

The HDC3120 is an integrated, capacitive based relative humidity (RH) and temperature sensor where the relative humidity and temperature sensor results are represented as ratiometric analog output. Conversion of signals to the analog domain provides a robust design for applications requiring signal transmission over wire or other distance-based use cases. The device provides high accuracy measurements over a wide supply range (1.62V – 5.5V) and low power consumption while maintaining less than 0.19% long term drift per year. The HDC3120 is available in a compact 2.5mm × 2.5mm × 0.8mm WSON 8-pin package. Both the temperature and humidity sensors are 100% tested and calibrated on a production setup that is NIST traceable and verified with equipment that is calibrated to ISO/IEC 17025 standards.

Package Information
PART NUMBERPACKAGE(1)PACKAGE SIZE(2)
HDC3120WSON (8)2.50mm × 2.50mm

× 0.75mm

For more information, see Section 11.
The package size (length × width) is a nominal value and includes pins, where applicable.
HDC3120 Relative Humidity (%RH) AccuracyRelative Humidity (%RH) Accuracy