SNIS177C March   2013  – May 2025 LMT90

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 LMT90 Transfer Function
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Full-Range Centigrade Temperature Sensor
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Capacitive Loads
        3. 8.2.1.3 Application Curve
    3. 8.3 System Examples
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
      3. 8.5.3 Thermal Considerations
  10. Device and Documentation Support
    1.     Related Documentation
    2. 9.1 Receiving Notification of Documentation Updates
    3. 9.2 Support Resources
    4. 9.3 Trademarks
    5. 9.4 Electrostatic Discharge Caution
    6. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Overview

The LMT90 device is a precision integrated-circuit temperature sensor that can sense a –40°C to 125°C temperature range using a single positive supply. The output voltage of the LMT90 has a positive temperature slope of 10mV/°C. A 500mV offset is included enabling negative temperature sensing when biased by a single supply.

The temperature-sensing element is comprised of a delta-VBE architecture. The temperature-sensing element is then buffered by an amplifier and provided to the VO pin. The amplifier has a simple class A output stage with typical 2kΩ output impedance as shown in the Functional Block Diagram. The output impedance has a temperature coefficient of approximately 1300ppm/°C. Over temperature the output impedance will max out at 4kΩ.