SNOSB24C October   2008  – November 2025 LM5576-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Shutdown / Standby
      2. 6.3.2 Soft Start
      3. 6.3.3 Thermal Protection
    4. 6.4 Device Functional Modes
      1. 6.4.1 High Voltage Start-Up Regulator
      2. 6.4.2 Oscillator and Sync Capability
      3. 6.4.3 Error Amplifier and PWM Comparator
      4. 6.4.4 Ramp Generator
      5. 6.4.5 Maximum Duty Cycle / Input Dropout Voltage
      6. 6.4.6 Boost Pin
      7. 6.4.7 Current Limit
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Bias Power Dissipation Reduction
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1  Custom Design With WEBENCH® Tools
        2. 7.2.2.2  External Components
        3. 7.2.2.3  R3 (RT)
        4. 7.2.2.4  L1
        5. 7.2.2.5  C3 (CRAMP)
        6. 7.2.2.6  C9, C10
        7. 7.2.2.7  D1
        8. 7.2.2.8  C1, C2
        9. 7.2.2.9  C8
        10. 7.2.2.10 C7
        11. 7.2.2.11 C4
        12. 7.2.2.12 R5, R6
        13. 7.2.2.13 R1, R2, C12
        14. 7.2.2.14 R7, C11
        15. 7.2.2.15 R4, C5, C6
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
      3. 7.4.3 Power Dissipation
      4. 7.4.4 Thermal Considerations
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Custom Design With WEBENCH® Tools
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Boost Pin

The LM5576-Q1 integrates an N-Channel buck switch and associated floating high voltage level shift / gate driver. This gate driver circuit works in conjunction with an internal diode and an external bootstrap capacitor. A 0.022-µF ceramic capacitor, connected with short traces between the BST pin and SW pin, is recommended. During the off-time of the buck switch, the SW pin voltage is approximately –0.5V and the bootstrap capacitor is charged from VCC through the internal bootstrap diode. When operating with a high PWM duty cycle, the buck switch will be forced off each cycle for 500 ns to ensure that the bootstrap capacitor is recharged.

Under very light load conditions or when the output voltage is pre-charged, the SW voltage will not remain low during the off-time of the buck switch. If the inductor current falls to zero and the SW pin rises, the bootstrap capacitor will not receive sufficient voltage to operate the buck switch gate driver. For these applications, the PRE pin can be connected to the SW pin to pre-charge the bootstrap capacitor. The internal pre-charge MOSFET and diode connected between the PRE pin and PGND turns on each cycle for 265 ns just prior to the onset of a new switching cycle. If the SW pin is at a normal negative voltage level (continuous conduction mode), then no current will flow through the pre-charge MOSFET/diode. For output voltages more than 5V, a minimum load current can still be required to ensure that the SW voltage is pulled low enough to recharge the bootstrap capacitor.