SNVSCQ9 November   2025 LM68425-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Device Comparison Table
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Output Voltage Selection
      2. 7.3.2 EN Pin and Use as VIN UVLO
      3. 7.3.3 Mode Selection
        1. 7.3.3.1 MODE/SYNC/TEMP Pin Uses for Synchronization
        2. 7.3.3.2 Clock Locking
      4. 7.3.4 Adjustable Switching Frequency
      5. 7.3.5 Dual Random Spread Spectrum (DRSS)
      6. 7.3.6 Internal LDO, VCC UVLO, and BIAS Input
      7. 7.3.7 Bootstrap Voltage (BST Pin)
      8. 7.3.8 Soft Start and Recovery From Dropout
      9. 7.3.9 Safety Features
        1. 7.3.9.1 Power-Good Monitor
        2. 7.3.9.2 Redundant VOUT Monitor
        3. 7.3.9.3 Fault Output
        4. 7.3.9.4 Voltage Reference Monitor
        5. 7.3.9.5 Start-Up Diagnostics
        6. 7.3.9.6 Overcurrent and Short-Circuit Protection
        7. 7.3.9.7 Hiccup
        8. 7.3.9.8 Thermal Shutdown
        9. 7.3.9.9 Redundant Temperature Sensor
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Active Mode
        1. 7.4.2.1 Peak Current Mode Operation
        2. 7.4.2.2 Auto Mode Operation
          1. 7.4.2.2.1 Diode Emulation
        3. 7.4.2.3 FPWM Mode Operation
        4. 7.4.2.4 Dropout
        5. 7.4.2.5 Recovery from Dropout
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Choosing the Switching Frequency
        3. 8.2.2.3 FB for Adjustable or Fixed Output Voltage Mode
        4. 8.2.2.4 Inductor Selection
        5. 8.2.2.5 Output Capacitor Selection
        6. 8.2.2.6 Input Capacitor Selection
        7. 8.2.2.7 CBOOT
        8. 8.2.2.8 External UVLO
        9. 8.2.2.9 Maximum Ambient Temperature
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Ground and Thermal Considerations
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

FB for Adjustable or Fixed Output Voltage Mode

This example uses the fixed output voltage mode to set the output voltage to 5V, by connecting the FB pin to the VCC pin.

In addition, a 4.99kΩ resistor must be connected between the VSNS pin and the output voltage node. SeeFigure 8-2

If an output voltage different from either 3.3V or 5V is required, then the adjustable output voltage mode must be used. In that case, an external voltage divider must be connected between the output node and the FB pin, while Equation 5 and Equation 6 are used to determine the divider values.

Equation 5. R F B B = R F B T × 0.8 V O U T   -   0.8
Equation 6. 100 k Ω R F B B R F B T 4 k Ω

Note that Equation 6 states that the parallel combination of RFBB and RFBT must be greater than 4kΩ and less than 100kΩ. This limit is required because the regulator must reliably detect the sate of the FB pin during the start-up sequence to set the output voltage mode correctly. The capacitance from the FB pin to ground must be minimized on the PCB layout.

When using the adjustable output voltage mode, an auxiliary divider is required between the output voltage node and the VSNS pin. The resistor values and ratio of this divider must match those of the main feedback divider. See Figure 8-2 The capacitance from the VSNS pin must be minimized on the PCB layout.

If the adjustable output voltage mode had been chosen for this example, then values of RFBT = 100kΩ and RFBB = 19.1kΩ satisfy both Equation 5 and Equation 6.

For more details, see Section 7.3.1.