SPRACA7A October   2017  – September 2022 TMS320F28075 , TMS320F28075-Q1 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S

 

  1.   C2000™ Hardware Built-In Self-Test
  2.   Trademarks
  3. 1Introduction
    1. 1.1 HWBIST Overview
      1. 1.1.1 HWBIST Working In-System
    2. 1.2 HWBIST Failure Response
    3. 1.3 Advantages of Using HWBIST In-System
  4. 2Using HWBIST In-System
    1. 2.1 Fundamental HWBIST Operation
      1. 2.1.1 Initializing the HWBIST Controller
      2. 2.1.2 Executing HWBIST
        1. 2.1.2.1 Executing HWBIST Micro-Run
        2. 2.1.2.2 Executing HWBIST Full-Run
      3. 2.1.3 Error Management
    2. 2.2 Managing HWBIST on Dual-Core Device
      1. 2.2.1 Semaphore Management
      2. 2.2.2 Interprocessor Communications
    3. 2.3 System Considerations When Using HWBIST
      1. 2.3.1 Interrupt Latency
      2. 2.3.2 Power Considerations
      3. 2.3.3 HWBIST Memory Requirements
      4. 2.3.4 Injecting Errors
    4. 2.4 Debugging HWBIST In-System
  5. 3References
  6. 4Revision History

Using HWBIST In-System

This section describes how to use the HWBIST in a system and is tightly coupled with the C2000 Software Diagnostic Library. This section only provides a summary of how HWBIST is executed, but additional details are provided in the SDL User's Guide found in C2000Ware. This section also details the considerations for running on dual-core devices and tips for debugging.

Note: The software for the configuration and execution of the HWBIST, released in the C2000 Software Diagnostic Library, generally should not be modified by the user. While minor adjustments for NMI handler or error flag management may be made, changing the HWBIST initialization and overall execution flow may result in a lower diagnostic coverage level than documented.