SPRACA7A October   2017  – September 2022 TMS320F28075 , TMS320F28075-Q1 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S

 

  1.   C2000™ Hardware Built-In Self-Test
  2.   Trademarks
  3. 1Introduction
    1. 1.1 HWBIST Overview
      1. 1.1.1 HWBIST Working In-System
    2. 1.2 HWBIST Failure Response
    3. 1.3 Advantages of Using HWBIST In-System
  4. 2Using HWBIST In-System
    1. 2.1 Fundamental HWBIST Operation
      1. 2.1.1 Initializing the HWBIST Controller
      2. 2.1.2 Executing HWBIST
        1. 2.1.2.1 Executing HWBIST Micro-Run
        2. 2.1.2.2 Executing HWBIST Full-Run
      3. 2.1.3 Error Management
    2. 2.2 Managing HWBIST on Dual-Core Device
      1. 2.2.1 Semaphore Management
      2. 2.2.2 Interprocessor Communications
    3. 2.3 System Considerations When Using HWBIST
      1. 2.3.1 Interrupt Latency
      2. 2.3.2 Power Considerations
      3. 2.3.3 HWBIST Memory Requirements
      4. 2.3.4 Injecting Errors
    4. 2.4 Debugging HWBIST In-System
  5. 3References
  6. 4Revision History

Interprocessor Communications

The Interprocessor Communications (IPC) peripheral can easily manage the level of communications needed to keep each processor (CPU1 and CPU2) informed if the other intends to run the HWBIST. For example, if a critical system interrupt must be monitored and mapped to CPU1, it may be advantageous to map this interrupt to CPU2 while CPU1 executes HWBIST operations. IPC messages and interrupts can be employed to achieve this interprocessor communication between CPU1 and CPU2. IPC can also be used to implement some handshaking between the two processors when handling the semaphore management.