SPRAD85 March   2023 AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1

 

  1.   Abstract
  2.   Trademarks
  3. Introduction
    1. 1.1 Before Getting Started
    2. 1.2 Device (Processor) Selection
    3. 1.3 Technical Documentation
    4. 1.4 Design Documentation
  4. System Block Diagram
    1. 2.1 Creating the System Block Diagram
    2. 2.2 Selecting the Boot Mode
    3. 2.3 Confirming Pin Multiplexing Compatibility
  5. Power Supply
    1. 3.1 Power Supply Architecture
      1. 3.1.1 Integrated Power Architecture
      2. 3.1.2 Discrete Power Architecture
    2. 3.2 Power (Supply) Rails
      1. 3.2.1 Core Supply
      2. 3.2.2 Peripheral Power Supply
      3. 3.2.3 Internal LDOs for I/O groups
      4. 3.2.4 Dual-Voltage LVCMOS I/Os
      5. 3.2.5 Dual-Voltage Dynamic Switching I/Os for SDIO
      6. 3.2.6 VPP (eFuse ROM programming supply)
    3. 3.3 Determining System Power Requirements
    4. 3.4 Power Supply Filters
    5. 3.5 Power Supply Decoupling and Bulk Capacitors
      1. 3.5.1 Note on PDN target impedance
    6. 3.6 Power Supply Sequencing
    7. 3.7 Supply Diagnostics
    8. 3.8 Power Supply Monitoring
  6. Clocking
    1. 4.1 System Clock Inputs
    2. 4.2 Unused Clock Inputs
    3. 4.3 Clock Output
    4. 4.4 Single-Ended Clock Sources
    5. 4.5 Crystal Selection
  7. JTAG
    1. 5.1 JTAG / Emulation
      1. 5.1.1 Configuration of JTAG / Emulation
      2. 5.1.2 System Implementation of JTAG / Emulation
      3. 5.1.3 JTAG Termination
  8. Device Configurations and Initialization
    1. 6.1 Device Reset
    2. 6.2 Latching of the Boot Modes
    3. 6.3 Watchdog Timer
  9. Peripherals
    1. 7.1  Selecting Peripherals Across Functional Domains
    2. 7.2  Memory
      1. 7.2.1 Processor DDR Subsystem and Device Register Configuration
    3. 7.3  Media and Data Storage Interfaces
    4. 7.4  Ethernet Interface Using CPSW3G Common Platform Switch 3-port Gigabit Ethernet
    5. 7.5  Programmable Real-Time Unit Subsystem (PRUSS)
    6. 7.6  Universal Serial Bus (USB) Subsystem
    7. 7.7  General Connectivity
    8. 7.8  Display Subsystem (DSS)
    9. 7.9  Camera Subsystem (CSI)
    10. 7.10 Termination of Unused Peripherals and I/Os
      1. 7.10.1 EXTINTn
  10. I/O Buffers and Termination
  11. Power Consumption and Thermal Solutions
    1. 9.1 Power Consumption
    2. 9.2 Power Savings Modes
    3. 9.3 Guidance on Thermal Solution
  12. 10Schematics Recommendations
    1. 10.1 Selection of Component and Component Values
    2. 10.2 Schematics Development
    3. 10.3 Reviewing the Schematics
    4. 10.4 Floor Planning of the PCB
  13. 11Layout and Routing Guidelines
    1. 11.1 Escape Routing Guidelines
    2. 11.2 LPDDR4 Board Design and Layout Guidelines
    3. 11.3 High-Speed Differential Signal Routing Guidance
  14. 12Device Handling and Assembly
  15. 13References
  16. 14Acronyms Used in This Document

Creating the System Block Diagram

The first step during the board design is to create a detailed System Block Diagram. The System Block Diagram includes all major functional blocks, associated devices, interfaces and illustrates the I/Os (ports) used for interconnecting the devices.

The following is a collection of resources to support the System Block Diagram creation process:

  • The SK-AM62A-LP EVM (AM62A starter kit for low-power Sitaraâ„¢ processors) and any other available EVMs are a good source to start with the design.
  • The TI.com links referred to below provide device-specific Functional Block Diagrams, Data Sheet, User's Guide, Errata, Application Notes, design considerations, and other related information for various applications. The design and development section includes EVM information, design tools, simulation models and software. As part of support and training, links to commonly applicable E2E threads and FAQs are available.