TIDUFC8 July   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Introduction
      2. 2.2.2 Basic Operation Principles and ZVS Requirements
    3. 2.3 Highlighted Products
      1. 2.3.1 UCC27288
      2. 2.3.2 UCC23513
      3. 2.3.3 TMS320F2800137
      4. 2.3.4 TLV9062
      5. 2.3.5 INA181
      6. 2.3.6 TPSM861252
      7. 2.3.7 AMC0311R
  9. 3System Design Theory
    1. 3.1 Design Theory
      1. 3.1.1 Resonant Tank Design
      2. 3.1.2 Full-Range ZVS Realization
      3. 3.1.3 Total Control Algorithm
      4. 3.1.4 Resonant Tank RMS Current Analysis
    2. 3.2 Hardware Design Theory
      1. 3.2.1 Resonant Capacitors
      2. 3.2.2 Power Stage
      3. 3.2.3 Voltage Sensing
      4. 3.2.4 Current Sensing
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
      1. 4.2.1 Simulation
    3. 4.3 Test Setup
    4. 4.4 Test Results
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
        1. 5.1.3.1 Layout Prints
    2. 5.2 Tools
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

Resonant Capacitors

Resonant capacitors need to operate at a high switching frequency. Conventional resonant capacitors typically use film capacitors because of good high-frequency characteristics, withstand voltage characteristics, and excellent reliability.

Multilayer Ceramic Capacitors (MLCC) can also be used as resonant capacitors, and the advantage of using MLCC is that these are small in size and relatively small in loss, but MLCC are not very reliable and are easily damaged. Also MLCC are more expensive than film capacitors.

This design uses MLCC for high efficiency and high power density requirements.