SN74ABT16500B

ACTIVE

Product details

Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 18 IOL (max) (mA) 64 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type Push-Pull Features Over-voltage tolerant inputs, Partial power down (Ioff), Power up 3-state, Ultra high speed (tpd <5ns) Technology family ABT Rating Catalog Operating temperature range (°C) -40 to 85
Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Number of channels 18 IOL (max) (mA) 64 IOH (max) (mA) -32 Input type TTL-Compatible CMOS Output type Push-Pull Features Over-voltage tolerant inputs, Partial power down (Ioff), Power up 3-state, Ultra high speed (tpd <5ns) Technology family ABT Rating Catalog Operating temperature range (°C) -40 to 85
SSOP (DL) 56 190.647 mm² 18.42 x 10.35 TSSOP (DGG) 56 113.4 mm² 14 x 8.1
  • Members of the Texas Instruments WidebusTM Family
  • State-of-the-Art EPIC-II BTM BiCMOS Design Significantly Reduces Power Dissipation
  • UBTTM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015
  • Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
  • Typical VOLP (Output Ground Bounce) < 0.8 V at VCC = 5 V, TA = 25°C
  • High-Impedance State During Power Up and Power Down
  • Flow-Through Architecture Optimizes PCB Layout
  • Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

Widebus, EPIC-IIB, and UBT are trademarks of Texas Instruments Incorporated.

  • Members of the Texas Instruments WidebusTM Family
  • State-of-the-Art EPIC-II BTM BiCMOS Design Significantly Reduces Power Dissipation
  • UBTTM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
  • ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015
  • Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
  • Typical VOLP (Output Ground Bounce) < 0.8 V at VCC = 5 V, TA = 25°C
  • High-Impedance State During Power Up and Power Down
  • Flow-Through Architecture Optimizes PCB Layout
  • Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

Widebus, EPIC-IIB, and UBT are trademarks of Texas Instruments Incorporated.

These 18-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and OEBA\), latch-enable (LEAB and LEBA), and clock (CLKAB\ and CLKBA\) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB\ is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the high-to-low transition of CLKAB\. OEAB is active-high. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses OEBA\, LEBA, and CLKBA\. The output enables are complementary (OEAB is active high and OEBA\ is active low).

When VCC is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, OE\ should be tied to VCC through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

The SN54ABT16500B is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16500B is characterized for operation from -40°C to 85°C.

These 18-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and OEBA\), latch-enable (LEAB and LEBA), and clock (CLKAB\ and CLKBA\) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB\ is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the high-to-low transition of CLKAB\. OEAB is active-high. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses OEBA\, LEBA, and CLKBA\. The output enables are complementary (OEAB is active high and OEBA\ is active low).

When VCC is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, OE\ should be tied to VCC through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

The SN54ABT16500B is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16500B is characterized for operation from -40°C to 85°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 19
Type Title Date
* Data sheet 18-Bit Universal Bus Transceivers With 3-State Outputs datasheet (Rev. G) 01 May 1997
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
Application note Quad Flatpack No-Lead Logic Packages (Rev. D) 16 Feb 2004
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
Selection guide Advanced Bus Interface Logic Selection Guide 09 Jan 2001
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note Advanced BiCMOS Technology (ABT) Logic Characterization Information (Rev. B) 01 Jun 1997
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (Rev. A) 01 Mar 1997
Application note Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (Rev. A) 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins CAD symbols, footprints & 3D models
SSOP (DL) 56 Ultra Librarian
TSSOP (DGG) 56 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos