Product details

Technology Family AHC Supply voltage (Min) (V) 2 Supply voltage (Max) (V) 5.5 Number of channels (#) 6 IOL (Max) (mA) 8 ICC (Max) (uA) 40 IOH (Max) (mA) -8 Input type Standard CMOS Output type 3-State Features Balanced outputs, Very high speed (tpd 5-10ns), Over-voltage tolerant inputs Rating Catalog
Technology Family AHC Supply voltage (Min) (V) 2 Supply voltage (Max) (V) 5.5 Number of channels (#) 6 IOL (Max) (mA) 8 ICC (Max) (uA) 40 IOH (Max) (mA) -8 Input type Standard CMOS Output type 3-State Features Balanced outputs, Very high speed (tpd 5-10ns), Over-voltage tolerant inputs Rating Catalog
PDIP (N) 16 181 mm² 19.3 x 9.4 SOIC (D) 16 59 mm² 9.9 x 6 TSSOP (PW) 16 22 mm² 4.4 x 5
  • Operating Range 2-V to 5.5-V V CC
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

  • Operating Range 2-V to 5.5-V V CC
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

The ’AHC367 devices are hex buffers and line drivers designed for 2-V to 5.5-V VCC operation.

These devices are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The ’AHC367 devices are organized as dual 4-line and 2-line buffers/drivers with active-low output-enable (1OE\ and 2OE\) inputs. When OE\ is low, the device passes noninverted data from the A inputs to the Y outputs. When OE\ is high, the utputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The ’AHC367 devices are hex buffers and line drivers designed for 2-V to 5.5-V VCC operation.

These devices are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The ’AHC367 devices are organized as dual 4-line and 2-line buffers/drivers with active-low output-enable (1OE\ and 2OE\) inputs. When OE\ is low, the device passes noninverted data from the A inputs to the Y outputs. When OE\ is high, the utputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 21
Type Title Date
* Data sheet Hex Buffers and Line Drivers With 3-State Outputs datasheet (Rev. E) 06 Feb 2002
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
More literature Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
More literature Logic Cross-Reference (Rev. A) 07 Oct 2003
Application note Advanced High-Speed CMOS (AHC) Logic Family (Rev. C) 02 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Design guide AHC/AHCT Designer's Guide February 2000 (Rev. D) 24 Feb 2000
Application note Benefits & Issues of Migrating 5-V and 3.3-V Logic to Lower-Voltage Supplies (Rev. A) 08 Sep 1999
More literature Military Advanced High-Speed CMOS Logic (AHC/AHCT) (Rev. C) 01 Apr 1998
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note Live Insertion 01 Oct 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Generic Logic EVM Supporting 14 through 24 Pin PW, DB, D, DW, NS, DYY, and DGV Packages

This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, DYY or DGV package in a 14 to 24 pin count.

In stock
Limit: 5
Simulation model

SN74AHC367 Behavioral SPICE Model

SCLM263.ZIP (7 KB) - PSpice Model
Reference designs

TIDA-010023 — Cost optimized, < 1% accurate current sensing and protection for 3-phase inverter reference design

This reference design demonstrates a cost optimized three-phase inverter leg (low-side shunt) current sensing solution with high accuracy and faster response for sensorless 2-shunt or 3-shunt field oriented control (FOC). This reference design demonstrates inverter leg current sensing with full (...)
Package Pins Download
PDIP (N) 16 View options
SOIC (D) 16 View options
TSSOP (PW) 16 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos